Gram positive & Gram negative bacteria Lecture 6

Done by: عمر الزومان

شمد الحربي Designed by

- 1. To know about the gram stain used for gram positive and gram negative bacteria.
- 2. To differentiate between the cell wall in gram positive and gram negative bacteria.
- 3. Species fall under gram positive and their properties.
- 4. Species fall under gram negative and their properties.

GRAM STAIN

Developed in 1884 by the Danish physician Hans Christian Gram

An important tool in bacterial taxonomy, distinguishing so-called **Gram-positive bacteria**, which remain coloured after the staining procedure, from **Gram-negative bacteria**, which do not retain dye and need to be counter-stained.

Can be applied to **pure cultures** of bacteria or to **clinical specimens**

CELL WALL

Gram +tive cell wall

Consists of :

- ✓ a thick, homogenous sheath of peptidoglycan 20-80 nm thick.
- tightly bound acidic polysaccharides, including teichoic acid and lipoteichoic acid.
- ✓ cell membrane .
- Retain crystal violet and stain purple .

Gram -tive cell wall			
Consist	ts of:		
\checkmark	an outer membrane containing		
	lipopolysaccharide (LPS)		

- ✓ thin shell of peptidoglycan
- ✓ periplasmic space
- ✓ inner membrane
- Lose crystal violet and stain pink from safranin counterstain

THE GRAM STAIN

		1.Catalase-positive	Staphylococcus
ĴR/		2.Gram-positive cocci in clusters	aureus
Ā			1.coagulase-
-PC			positive most
LIS	Sta		important
TIVE COC	aphy		2.pathogen
	loco		Staph.
			epidermidis
			and other
			coagulase negative
			staphylococci eg:
			S saprophiticus
		1.Catalase-negative	Strep. pyogenes
		2.Gram-positive cocci in <u>chains or</u>	
	S	pairs	Strep.
	tre		pneumoniae
	oto		Viridans-type
	ČO		streps
	<u>c</u> .		Enterococcus
			faecalis

• **STREPTOCOCCUS**

- **S. viridans**-oral flora -infective endocarditis
- S. pyogenes dividedby type of haemolysis
 - 1. Group A, beta hemolytic strep
 - 2. pharyngitis, cellulitis

3. acute glomerulonephritis

- edema, hypertension, hematuria
- antigen-antibody complex depositio
- S. PNEUMONIAE

4. rheumatic fever

- fever
- migrating polyarthritis
- carditis
- immunologic cross reactivity

GRAM POSITIVE BACILLI: 1. A-Spore forming 2_B-Non spore

forming

Spore forming are divided into:-

1. AEROBIC SPORE FORMING MOST IMPORTANT IS

Bacillus anthracis, that causes anthracis

- 2. ANEROBIC GRAM POSITIVE BACILLI
- 1. C. tetani Tetanus

4. C. diphtheriae - Fever, pharyngitis, cervical LAD

- thick, gray, adherent membrane
- sequelae-->airway obstruction, myocarditis

2. C. perfringens Gas gangarene

3. C. botulinum - botulism

- Descending weakness-->paralysis
- diplopia, dysphagia- >respiratory failure

GRAM-NEGATIVE COCCI

- * Neisseria gonorrhoeae :The Gonococcus
- * Neisseria meningitides: The Meningococcus
- Both Gram-negative intracellular diplococci
- Moraxella catarrhalis

GRAM-NEGATIVE RODS

- Enteric Bacteria they ferment sugars most important are: 1. E.coli,
 2. Salmonella, 3. Shigella, 4. Yersinia and Klebsiella pneumonia, 5.
 Proteus.
- Gram-Negative Rods

Fastidious GNRs

- 1. Bordetella pertussis
- 2. Haemophilus influenzae
- 3. Campylobacter jejuni
- 4. Helicobacter pylori
- 5. Legionella pneumophila

- Anaerobic GNRs
 - 1. Bacteroides fragilis
 - 2. Fusobacterium

Oxidise positive non fermentative i.e. they do not ferment sugars
 e.g. Pseudomonas that causes infection in Immunocompromised patients
 Oxidise negative non fermentative e.g. (Acinobacter species)

Notes that: Oxidise positive comma shaped and also fermentative most important is *Vibrio cholerae* that causes cholera which is a disease characterized by severe diarrhea and dehydration

UNUSUAL GRAM NEGATIVE

ORGANISMS: Mycoplasmas

- Smallest free-living organisms
- No cell wall
- M. pneumonia, M. genitalium

NON-GRAM-STAINABLE BACTERIA

- Unusual gram-positives
- o Spirochaetes
- o Obligate intra-cellular bacteria