1. Pranabesh Das, Pallab Kanti Dey, Angelos Koutsianas and Nikos Tzanakis; Perfect powers in sum of three fifth powers, Journal of Number Theory, 236 (2022), 443-462.
2. Pallab Kanti Dey and Bidisha Roy; Torsion groups of Mordell Curves over cubic and sextic fields, Publicationes Mathematicae Debrecen, 99 (3-4) (2021), 275-297.
3. Pranabesh Das, Pallab Kanti Dey, Bibekananda Maji and Sudhansu Sekhar Rout; Perfect powers in alternating sum of consecutive cubes, Glasnik Matematicki. Ser. III, 55 (75) (2020), 37-53.
4. Pranabesh Das, Pallab Kanti Dey and Sudhansu Sekhar Rout; Sums of weighted fifth powers being a perfect power; a special case, Journal of the Ramanujan Mathematical Society, 35 (1) (2020), 23-33.
5. Stephan Baier and Pallab Kanti Dey; Prime powers dividing products of consecutive integer values of $x^{2^{n}}+1$, Research in Number Theory, 6 (1) (2020), Art. 7, 12 pp.
6. Pallab Kanti Dey and Shanta Laishram; Powerful numbers in product of consecutive integer values of a polynomial, Publicationes Mathematicae Debrecen, 94 (3-4) (2019), 319-336.
7. Pallab Kanti Dey and Takao Komatsu; Some identities of Cauchy numbers associated with continued fractions, Results in Mathematics, 74 (2) (2019), Art. 83, 11 pp.
8. Pallab Kanti Dey; Torsion groups of a family of elliptic curves over number fields, Czechoslovak Mathematical Journal, 69 (1) (2019), 161-171.
9. Pallab Kanti Dey; Elliptic curves with rank zero over number fields, Functiones et Approximatio Commentarii Mathematici, 56 (1) (2017), 25-37.
10. Pallab Kanti Dey and Sudhansu Sekhar Rout; Diophantine equations concerning balancing and Lucas balancing numbers, Archiv der Mathematik, 108 (1) (2017), 2943.
11. Pallab Kanti Dey and Bibekananda Maji; Arithmetic progressions on $y^{2}=x^{3}+k$, Journal of Integer Sequences, 19 (7) (2016), Article 16.7.4, 12 pp.
12. Pallab Kanti Dey and Balesh Kumar; An analogue of Artin's primitive root conjecture, Integers, 16 (2016), Paper No. A67, 7 pp.
13. Pallab Kanti Dey and R. Thangadurai; The length of an arithmetic progression represented by a binary quadratic form, American Mathematical Monthly, 121 (10) (2014), 932-936.
