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Abstract: 
 
 The overall structure of LS detection system of pulmonary diseases has a front-end feature extraction phase and a 
back-end classifier phase. Most automatic identification systems of pulmonary diseases from LS are devoted on 
characterizing the breathing sound for the front-end feature extraction with different classification models.With the 
recent progress in digital signal processing and machine learning technologies, the electronic stethoscope has been used 
to replace the traditional acoustic stethoscope in recording LS. Recent works have reported the success of spectral 
centroid-based features for many speech detection applications. However, spectral centroid-based features for lung 
sound (LS) detection of pulmonary diseases have received less attention. In this paper, Spectral Centroid 
Magnitude Coefficients (SCMC) which is a type of spectral centroid-based features, is explored for LS detection of 
pulmonary diseases. Additionally, Thomson multi-taper (TMT) method is introduced to replace single taper method in 
order to reduce large variance representation of the original SCMC feature. We denote this modified SCMC feature as 
multi-taper SCMC (TMT-SCMC) feature. The performance of the proposed SCMC features is investigated using LS 
signals provided by a publicly available database. The experimental results demonstrate that the SCMC with a proper 
frame length and the optimal number of sub-bands provided the accuracy values of 91.98%, 96.48%, 98.35%. 
 
Keywords: Biosensor Signal Processing; Spectral Centroid-Based Feature; Multi-Taper Method;Pulmonary Diseases 
 
 
1. Introduction 
 
Lung sound (LS) signals provide important clues in diagnosing pulmonary dis-eases [1]. The most popular diagnostic 
method for pulmonary diseases used by specialists is based on auscultation of the LS with a stethoscope [2]. However, 
auscultation using traditional stethoscope may be wrong because of the following factors: (a) human ear is sensitive 
to the frequency range of 1000Hz to 2000Hz, so that important information in the LS frequency range from 100Hz to 
1000Hz may be lost and (b) in-experienced medical staff leading to inaccurate diagnosis of diseases. To solve the 
problems mentioned above, alternative auscultation method is required to assist doctors for better prediction of 
pulmonary diseases. With the recent progress in digital signal processing and machine learning technologies, the 
electronic stethoscope has been used to replace the traditional acoustic stethoscope in recording LS The recorded LS 
signals can be extracted as a new representation via digital signal processing and it can be recognized by contracting 
ma-chine learning model [3]. Building a LS detection system for pulmonary diseases by exploiting digital signal 
processing and machine learning techniques based on LS signals obtained by the electronic stethoscope has been 
shown to be effective in detecting pulmonary diseases [4]. In this paper, we focus on LS detection based on digital 
signal processing and machine learning technologies to detect pulmonary diseases, which is a subject area of 
pattern recognition task in the fields of biosensors and computer science. 
 
The overall structure of LS detection system of pulmonary diseases has a front-end feature extraction phase and a 
back-end classifier phase. Most automatic identification systems of pulmonary diseases from LS are devoted on 
characterizing the breathing sound for the front-end feature extraction with different classification models. 
Previous studies have reported the exploitation of wavelet-based features at the feature extraction stage [5,6,7], Mel 
frequency cepstral coefficients (MFCC) [8], linear predictive cepstral coefficient [9], bispectrum [8] and the 
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Empirical Wavelet Transform (EWT) with Fixed Boundary Points (EWT-FBP) feature [10]. Most previous studies 
[5,9,11-14] have applied Support Vector Machine (SVM) as a classifier to identify pulmonary diseases from LS 
because it can efficiently distinguish the data of different classes based on an optimal hyperplane with the biggest 
possible margin. In addition to using SVM, there are various classifiers such as Gaussian mixture model (GMM) 
[15], k-nearest neighbor (KNN) [14], Linear discriminant analysis (LDA) [14], Decision trees (DT) [14], 
multilayer perceptron (MLP) [10], random forest (RF) [10], extreme gradient boosting (XGBoost) [10], and light 
gradient boosting machine (LGBM) [10] classifiers. From the aforementioned classifiers, it can be seen that the ability 
to classify pulmonary diseases from LS signals is significantly influenced by the effectiveness of feature extraction. 
This suggests that the exploration/design of efficient feature extraction is important in achieving expected results for 
automatic identification of pulmonary diseases. Apart from the classifiers mentioned above, deep neural network (DNN) 
methods have been proven to be efficient in identifying pulmonary diseases. The authors of [16] proposed convolutional 
neural network (CNN) with MFCC information. The experimental results showed that the exploitation of the CNN with 
MFCC information provided promising results for the classification for normal versus asthma versus pneumonia. The 
combination of VGGish network with the bidirectional gated recur-rent unit neural network (BiGRU) was proposed in 
[17]. The results exhibited that VGGish BiGRU using Mel-spectrogram was superior to CNN using MFCC because of 
the fused advantages of VGGish and BiGRU. Although these methods can efficiently classify pulmonary diseases from 
LS signals, the classification performance strongly requires a large number of training data for deep neural network 
training. Unfortunately, most of the publicly accessible LS dataset is not large enough to guarantee results for DNN-based 
diagnosis of pulmonary diseases. 
 
In this paper, spectral centroid-based feature is applied for automatic LS identification of pulmonary diseases. 
Recently, Spectral Centroid Magnitude Coefficients (SCMC) feature has been proven to be efficient for many speech 
applications such as speaker verification [18,19], replay attack detection [20], cognitive load classification [21] and 
speech emotion recognition [22]. We therefore hypothesize that the SCMC, as a spectral centroid-based feature, is 
useful for automatic LS detection of pulmonary diseases. The advantage of SCMC is capturing the weighted average 
magnitude based on given sub-bands, and  efficiently characterizing LS signals. In addition, Thomson  multi-taper 
(TMT) method is introduced in this paper to replace original single-taper method using Hamming window for the 
SCMC feature extraction. We refer to the modified SCMC feature with TMT method as TMT-SCMC feature. Because 
of the ad-vantages of weighted average magnitude information and multi-taper method, the TMT-SCMC feature was 
expected to show significant differences between normal and pulmonary diseases signals, including normal versus 
asthma, normal versus  pneumonia  and normal versus chronic obstructive pulmonary disease (COPD). The 
contributions of this article can be summarized as follows: 1) To our best knowledge, the SCMC is first explored for LS 
detection of pulmonary diseases. Based on the optimal window length and suitable number of sub-bands, the 
experimental results showed that the SCMC is useful for the classification of normal versus pulmonary 
diseases. 
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2. Proposed feature extraction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The block diagram of original SCMC and TMT-SCMC features extraction 
 

2.1. Original SCMC extraction 
 
SCMC was proposed by [23] for speaker recognition task. It can be calculated based on the Discrete Cosine 
Transform (DCT) of log spectral centroid magnitude of signal’s sub-band spectral centroid magnitude information. 
The SCMC has properties similar to formant frequencies [23] that significantly characterize the acoustic scenes. 
By following the same configuration with [12], the spectrum S ( f ) of a LS signal is first computed by Fast Fourier 
Transform (FFT) of a LS frame, x(t) in the time domain. Next, the discrete spectrum S ( f ) is divided into M sub-
bands using a series of triangle scale filter-banks where frequency responses denote Wm ( f ) . As suggested in 
[23,24], Spectral Centroid Magnitude,   SCM ,is based on the weighted average magnitude spectrum in the sub-bands. It 
is calculated by averaging energy as given by: 
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To reduce the dynamic range and decorrelate the features, the DCT is applied to the log of the SCM vector to obtain the 
final SCMC feature vector as follows 
 
 

 
where l denotes the number of cepstral coefficients and Nc is the number of the SCMC representation. Further 
details of the SCMC feature extraction can be seen in [18,25]. The process of SCMC feature extraction is shown in 
Figure 1 
 
2.2. TMT-SCMC extraction 
From the previous subsection, the original SCMC features are usually calculated from a Hamming-windowed 
periodogram spectrum estimate as follows 
 
 

 
where f {1, 2, 3,..., N} represents the discrete frequency index and w  
[(1),(2),(3),...,(N )] is the time-domain window function. 
 
Although the extraction of a single spectrum using a single-taper method and a Hamming window can provide 
detailed information, the spectrum representation still has a high variance estimation and may not be sufficient to 
characterize diseases from LS signals. To overcome this problem, previous works in the field of speaker 
verification tasks suggested that average spectral estimate using a set of different tapers could reduce large variance 
spectrum when compared with single-taper method. Motivated by speaker verification task, which is one type of audio 
classification, multi-taper method is introduced to replace the single taper methods for obtaining multi-taper 
spectrum estimate, S ( f ) . It is obtained by 
 

 
 
where wj is the j th data taper 1,2,3, ,  N mt  (which are used with corresponding weights, (j ) ). 
 
In this paper, TMT method is used to perform multi-taper spectrum estimation. It is specified from the Slepian sequences. 
Slepian sequences is based on unit-energy sequences on [0, S ]. Slepian tapers is applied to overcome eigenvalue 
problem as follows: 
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where 0  p  S, and 0  n  S , vj denote the eigen-values ranging from zero to unity where 0  v j  1. A 

represents a real symmetric Toeplitz matrix with each element derived from  
 
 
 
 
 
 
 
 
where B is the half-frequency bandwidth.  
 
3. Experimental Setup 
 
3.1 Lung Sound Database 
  

In this paper, a public database [16] is used to investigate the performance of the proposed feature for LS 
detection of pulmonary diseases. The database was a record of 35 healthy (normal) and 77 unhealthy (unnormal) subjects 
with the age averaged at 50.5 years. All recorded LS signals were sampled at 4000 Hz. The abnormal LS signals were 
produced from subjects with asthma, pneumonia, COPD, heart failure, lung fibrosis, and pleural effusion pathologies. 
The LS recordings for asthma, COPDs, pneumonia, and normal classes were used for our studies. The current 
experiments employed 105, 96, 27, and 15 LS signals to investigate the performance of our proposed feature for 
normal, asthma, COPDs, pneumonia classes, respectively. 
 
3.2 Feature extraction 
 
Since it is important to minimize heart sounds and noise effects, two methods were implemented. The 12th 
order Butterworth band-pass filter method with 120-1800 Hz was applied on raw LS signal as suggested in [17,26] 
for the pre-processing. Then, the filtered signal w further denoised using the 8th order Daubechies db14 Wavelet 
method summarized in [25]. For framing operation, the signals were divided using a fixed frame size of 3s with 50 
% overlap between LS frames, which gave the best detection performance. In addition, different frame lengths of 
20ms,240ms, 250ms, 256ms, 500ms, and 1s, 2s with 50% overlap and 4s, 5s with non-overlap were investigated 
but they did not improve the accuracy. These results meant that the frame length of 3 s with 50 % overlap between LS 
frames was more suitable for the original and our proposed SCMC features. Triangle scale filter-bank was used for the 
sub-band calculation as suggested in [24]. In this paper, we modified the publicly available pro-gram code provided by 
[24] to calculate the SCMC and TMT-SCMC feature. The next section analyzes the optimal number of sub-bands 
for maximum effective accuracy in SCMC and the optimal minimum taper for maximum effective accuracy in 
TMT-SCMC. For the feature extraction of SCMC method, TMT method was exploited to achieve promising 
performance. However, the results of using sine-weighted cestrum estimator and multipeak methods, which are not 
reported here, demonstrate no significant performance difference. This suggests that TMT method is particularly 
suitable to achieve high detection performance. In this paper, as suggested in [24], the original SCMC and TMT-
SCMC were concatenated with their delta and delta-delta coefficients. 
 
3.3 Classifiers 
 
Because it can distinguish between data from different classes by determining an optimal hyperplane with the 
largest possible margin (the detailed procedure on the SVM classifier can be found in [5,12]), SVM has drawn a lot 
of attention in terms of LS detection of pulmonary diseases. Recent works [5,9,11-14] have reported that the SVM-
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based classifier demonstrates promising results for LS detection of pulmonary diseases. In this paper, we employed 
SVM as the detector in our experiment. Here, the publicly available Scikit-learn (Sklearn) libraries was used to 
train all the classifier models. For SVM, the penalty parameter C was set to 1, the kernel function was radial basis 
function, and the rest parameters were the default values. 
 
3.4 Evaluation criteria 
 
In this paper, we followed the evaluation setup explained in [10]. The 5-fold cross-validation is used to evaluate the 
overall classifier models and each of 5s duration signals, which were obtained by dividing LS recordings with a 
nonoverlapping duration, was considered for the experiment. Here, the numbers of 5s duration signals investigated 
normal, asthma, COPD, and pneumonia classes were obtained as 418, 366, 111, 63, respectively. The decision of the 
tested LS signals was based on the average score for all belonging segments. In this paper, the efficiency of our 
proposed feature was investigated for the detection of two classes (normal versus asthma/pneumonia/COPD) based on 
three common evaluations as follows 
 
 
 
 
 
 
 
 
 
 
 
 
where TP and TN denote true pulmonary diseases and normal signals where the classifier correctly predicted 
abnormal and normal classes. FP and FN denote true pulmonary diseases and normal signals where the classifier 
incorrectly predicted ab-normal and normal classes. For the classifier with three classes (normal versus pneumonia 
versus asthma versus COPD), the efficiency of our proposed and applied feature was evaluated using accuracy as follows: 
 

 
 

4. Results and Discussion 
 
4.1 Results based on binary detection 
 
This section presents the detection performance of original SCMC and our pro-posed TMT- SCMC features. Because 
the number of sub-bands affect the effectiveness of SCMC feature, we first found out the optimal number of sub-bands 
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for automatic LS detection of pulmonary diseases in order to obtain the  highest accuracy. Figure  2 demonstrates  the 
performance of  SCMC using various number of sub-bands ranging from 20 to 200 by the step size of 20. It is clear 
that increasing the number of sub-bands from 20 to 160 led to an improvement in average accuracy, but using more than 
160 sub-bands had no further effect on average accuracy. These outcomes indicate that the SCMC using standard sub-
bands (20 sub-bands or 40 sub-bands) based on speech classification applications was insufficient to capture LS -
relevant and the SCMC based on 160 sub-bands (optimal sub-bands for LS detection) provided the best performance 
with the average accuracy of 95.59 %. As a result, the SCMC based on 160 sub-bands was used as baseline SCMC 
feature with single taper method and compared with other features. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Accuracy of SCMC based on different sub-bands. 

 
Next, we analyzed the effectiveness of TMT-SCMC feature using different tapers. Figure 3 demonstrates the 
performance of TMT-SCMC using several tapers. Figure 3 shows that the TMT method was very helpful for 
improving the original SCMC feature performance for lung disease LS detection because the feature extraction from 
multi-taper spectrum could provide information on how to distinguish between a normal and abnormal LS signal. 
Additionally, it can be seen that the TMT- SCMC with 260 tapers could achieve an average accuracy of 100% for the 
LS detection for normal versus asthma, normal versus pneumonia, and normal versus COPD. These results confirmed 
that TMT-SCMC was powerful for pulmonary disease verification from LS signals. 
 
Finally, various numbers of tapers were varied from 242 tapers to 248 tapers by the step size of 2 tapers to investigate 
the maximum detection performance with the minimum number of tapers as shown in Figure 4. It can be seen that TMT-
SCMC using 256 tapers provided the same performance as the TMT-SCMC using more than 256 tapers. This indicates 
that TMT-SCMC using 256 tapers was still efficient and it provided faster computation time due to minimum tapers. 
Here, TMT-SCMC feature based on 160 sub-bands and 256 tapers was used to compare other feature extraction methods. 
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Figure 3. The accuracy of TMT-SCMC feature based on different tapers sub-bands varied from 80 to 260 by the step size 
of 20. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. The accuracy of TMT-SCMC feature based on different tapers sub-bands varied from 242 to 248 by the step 
size of 2. 
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4.2 Results based on the classification of three classes 
 
This subsection reports the classification performance with three classes. Table 1 shows the results of the classification 
with three classes using the SCMC and muti-taper SCMC feature. The comparison between the original SCMC and 
TMT-SCMC showed that multi-taper outperformed the original SCMC feature because multi-taper method could 
efficiently average spectrum making TMT- SCMC robust to variance representation. A similar tendency was observed 
in the binary detection mentioned in previous subsection. These results suggested that TMT-SCMC feature is useful for 
the classification of three classes for automatic LS detection of pulmonary diseases. 
 

Table 1. Performances of the classification of three classes based on SCMC and TMT-SCMC features. 
 
 
 
 
 
 
 
4.4 Comparison with other methods 
 
This subsection presents the performance of the proposed feature compared with those of some known systems 
referred in [10]. From the introduction section, some systems were not comparable with our proposed SCMC 
features due to different databases. Tables 2 and 3 report the results of some known systems compared with the 
proposed SCMC feature methods for the classification of two and three classes, respectively. 

 
Table 2. Comparison with other methods based on two classes. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Feature 
extraction 

 
 

 
 

 
 

OA(%) 

SCMC 88.47 89.23 93.74 90.48 
TMT-SCMC 100.00 100.00 98.63 99.40 

Classificatio
n Scheme 
(results re- 
ported in 
[10]) 

 
 
Features 

 
 

Classifiers 

 
 

Accuracy 

 
 

Sensitivity 

 
 

Specificity 

 
 
 
 
 
 

Norma
l 
versus 
Asthm
a 

EWT KNN 48.14 ± 3.45 80.11 ± 4.70 37.37 ± 5.53 

EWT MLP 48.14 ± 3.45 33.60 ± 47.20 64.71 ± 48.32 

EWT SVM 64.19 ± 4.23 67.97 ± 6.02 59.89 ± 4.57 

EWT RF 77.08 ± 2.99 87.68 ± 3.16 65.08 ± 4.42 

EWT XGboost 73.39 ± 3.21 77.73 ± 3.63 68.47 ± 4.34 

EWT LGBN 80.35 ± 3.78 84.88 ± 4.21 75.23 ± 3.49 

SCMC SVM 91.98 ± 4.73 88.76 ± 5.02 95.65 ± 5.52 

TMT- SCMC SVM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 
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Normal 
versus 
Pneumoni
a 

EWT KNN 74.42 ± 11.45 92.50 ± 3.53 100.00 ± 0.00 

EWT MLP 74.42 ± 11.45 82.00 ± 20.57 60.00 ± 54.77 

EWT SVM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 

EWT RF 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 

EWT XGboost 99.01 ± 0.89 96.50 ± 2.85 100.00 ± 0.00 

EWT LGBN 99.34 ± 0.89 99.00 ± 1.36 100.00 ± 0.00 

SCMC SVM 98.35 ± 2.26 99.52 ± 1.06 90.77 ± 13.76 

TMT- SCMC SVM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 

 
 
 
 
 
 

Norma
l 
versus 
COP
D 

EWT KNN 67.78 ± 4.88 90.50 ± 3.70 31.01 ± 9.03 

EWT MLP 67.78 ± 4.88 90.00 ± 16.95 33.32 ± 30.46 

EWT SVM 79.33 ± 2.22 86.59 ± 2.85 68.42 ± 8.64 

EWT RF 77.50 ± 4.11 88.50 ± 3.35 60.39 ± 7.37 

EWT XGboost 81.16 ± 7.28 87.00 ± 5.96 72.15 ± 10.87 

EWT LGBN 83.27 ± 2.44 89.49 ± 6.51 72.24 ± 8.33 

SCMC SVM 96.43 ± 4.64 98.81 ± 2.06 87.59 ± 15.63 

TMT- SCMC SVM 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 

 
 
From Table 2, it can be noted that TMT-SCMC feature outperformed all known systems in terms of accuracy, 
sensitivity, and specificity for binary classification. This suggests that TMT-SCMC is powerful for normal versus 
asthma, normal versus chronic obstructive pulmonary diseases (COPDs) because it could capture LS-relevant 
information effectively, based on exploiting the weighted average magnitude derived from multi-taper spectrum 
information. 
 
 
5. Conclusions and Future Work 
 
In this paper, SCMC feature was first explored for automatic LS detection of pulmonary diseases. In addition, we 
modified the original SCMC feature extraction by using TMT method to replace single taper method based on 
Hamming windows. We referred to the modified SCMC feature as TMT-SCMC. The performances of the explored and 
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our proposed features were investigated using the publicly available database with five-fold cross-validation. The 
experimental results demonstrated that the SCMC feature with 160 sub-bands was useful for automatic LS detection 
of pulmonary diseases based on 3s frame length with 50% overlap. The SCMC provided average accuracies of 
91.98% for normal versus asthma, 98.35% for normal versus pneumonia, and 96.43% for normal versus COPD, 
90.44% for normal versus asthma versus pneumonia. Moreover, the TMT-SCMC feature based on 160 sub-bands 
and 256 tapers pro-vided the average accuracies of 100.00% for normal versus asthma/pneumonia/COPD, 99.40 % for 
normal versus asthma versus pneumonia. These results suggested that TMT-SCMC was very powerful for the LS 
classification for discriminating pulmonary diseases from normal signals. In future work, we would like to combine 
relative phase information [28,29] with the proposed feature and attempt to investigate the proposed feature 
based on empirical mode decomposition method [30]. 
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Indication is presented that EEG fluctuations in the alpha and theta band reflect cognitive and 

memory performance in particular. Good recital is related to two types of EEG phenomena 

(i) a stimulant increase in alpha but a decrease in theta power, and (ii) a large phasic (event-

related) decrease in alpha but increase in theta, depending on the type of memory demands. 

Because alpha frequency shows large interindividual differences which are related to age and 

memory performance, this double dissociation between alpha vs. theta and tonic vs. phasic 

changes can be observed only if fixed frequency bands are abandoned. It is suggested to 

adjust the frequency windows of alpha and theta for each subject by using individual alpha 

frequency as an anchor point. Based on this procedure, a consistent interpretation of a variety 

of findings is made possible.  Brain oscillations vary due to neurological activities that play 

an important role in designing a cognitive task. In the proposed study, 27 subjects 

experimented with different cognitive activities (rest, meditation, and arithmetic), and their 

alpha and theta band frequencies were analyzed. BIOPAC-MP-160 has performed the data 

acquisition and further processing of the acquired dataset was performed in EEGLAB. The 

results illustrated that the cross-frequency correlation (alpha: theta: 1:2) between alpha and 

theta waves has been enhanced during effortful cognition. The alpha-theta cross-frequencies 

were observed to be maximum in the arithmetic state, while it remains low in both the resting 

and meditation states. Maximum episodes of the cross-frequency correlations occurred when 

alpha band frequencies lie between 9-12 Hz. The study also reveals that maximum alpha-

theta cross-frequency (40.74%) was found at the electrode positions Af3 and Af4. The 

comparisons based on event-related potentials (ERPs) and power spectral densities (PSDs) 

have shown that the meditation state is more sluggish than the arithmetic and rest states. 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

    
 

INTRODUCTION 
    

In a physiological sense, EEG power reflects the number of 

neurons that discharge synchronously. Because brain volume 

and the thickness of the cortical layer is positively correlated 

with intelligence, it is tempting to assume that EEG power too, 

is a measure that reflects the capacity or performance of 

cortical information processing. Although it will be argued that 

this is in principle the case, it must be emphasized that power 

measurements are strongly affected by a variety of unspecific 

factors such as the thickness of the skull or the volume of 

cerebrospinal fluid, by methodological and technical factors 

(such as interelectrode distance or type of montage) but also by 

more specific factors such as age, arousal and the type of 

cognitive demands during actual task performance. 
 

In today's fast-paced world, it has been observed that very few 

people have time to focus on mindfulness meditation [1]. The 

primary goal of meditation is to control our thoughts with a 

focus on a specific object, such as focusing on the expanse, 

counting the breath, guided meditation, etc. [2, 3]. Along with 

the dissolution of the ego, detachment, and non-involvement 

with things have complimented meditation [4]. One of the 

goals of mindfulness meditation is to release one's brain from 

external interruptions, control one's thoughts, and In a 

physiological sense, EEG power reflects the number of neurons 

that discharge synchronously. Because brain volume and the 

thickness of the cortical layer is positively correlated with 

intelligence, it is tempting to assume that EEG power too, is a 

measure that reflects the capacity or performance of cortical 

information processing. Although it will be argued that this is 

in principle the case, it must be emphasized that power 

measurements are strongly affected by a variety of unspecific 

factors such as the thickness of the skull or the volume of 

cerebrospinal fluid, by methodological and technical factors 

(such as interelectrode distance or type of montage) but also by 
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more specific factors such as age, arousal and the type of 

cognitive demands during actual task performance. 
 

In today's fast-paced world, it has been observed that very few 

people have time to focus on mindfulness meditation [1]. The 

primary goal of meditation is to control our thoughts with a 

focus on a specific object, such as focusing on the expanse, 

counting the breath, guided meditation, etc. [2, 3]. Along with 

the dissolution of the ego, detachment, and non-involvement 

with things have complimented meditation [4]. One of the 

goals of mindfulness meditation is to release one's brain from 

lower the thought circle frequency to achieve a state of mental 

emptiness. The retrieval and manipulation of information 

during any designed cognitive task were seen as the essential 

function of the human brain that can be associated with the 

alpha (8-14 Hz) and theta (4-8 Hz) frequency bands [5-7]. 

Human brain efficiency can be increased through meditation 

and a relaxed mind, enabling better coordination in our daily 

tasks and leading a happy and healthy life [8, 9]. In recent 

years, ubiquitous and pervasive healthcare devices have been 

widely used for low-computational human health prediction. 

Electroencephalography (EEG) has been used to analyze brain 

oscillations in various mental states and detect human brain 

activity or neurological disorders. Various other techniques, 

e.g., functional magnetic resonance imaging (fMRI), positron 

emission tomography (PET), magnetoencephalography (MEG), 

and optical imaging, are also available for data acquisition. 

EEG has been used more frequently than other available 

techniques due to its high temporal resolution, low cost, 

availability, and noninvasive nature [10]. The brain oscillations 

reflect the neural activities due to various actions or thoughts of 

the subject. EEG frequencies played a crucial role in analyzing 

different cognitive states, e.g., arithmetic, meditation, and rest 

[11, 12]. Alpha (8-14Hz) and theta (4-8Hz) frequency bands 

have played a significant role and were often used to analyze 

and differentiate various mental states and cognitive activities 

[13-15]. Information storage and retrieval have been associated 

with the alpha band, while the theta band has been incorporated 

with information manipulation [16, 17]. While performing 

various mental tasks, the changes in alpha and theta band 

frequencies were observed by differentiating their peak 

amplitudes and powers [18]. The literature confirmed that the 

alpha-peak frequency was accelerated during effortful 

cognitive tasks [19], and alpha-theta peaks appeared around its 

harmonic, i.e., alpha: theta: 2:1 [20]. Some results also reported 

that alpha and theta powers were enhanced during meditation 

compared to rest [21-24]. However, the results differ between 

experienced mediators and novice meditators [25]. The 

frequency variations also depended on different meditation 

techniques [26, 27]. The literature revealed that most of the 

studies used 19, 23, 36, and more number of electrodes 

covering the entire scalp surface during analysis [28]. Very few 

studies are available that focus on a particular area of the brain. 

In the present work, experimental analysis has been performed 

with a pair of channels at six different positions associated with 

the frontal lobe (i.e., Fp1, Fp2, Af3, Af4, Af7, and Af8). The 

main focus of this research is the study and analysis of changes 

in brain activation due to cognitive tasks such as rest, 

meditation, and arithmetic. This study demonstrated how the 

cross-frequency correlations in the brain's frontal region vary 

under different task conditions. A cognitive task has been 

designed having three different states (rest, meditation, and 

arithmetic). Since meditation is non-quantitative, the person 

has been meditated by hearing the OM chant on a specific 

frequency (963 Hz). Human systems have seven chakras [29]. 

Resonance frequencies for each chakra have been reported 

differently, starting from 436 Hz - 963 Hz [30]. Different 

colors are assigned to all chakras [30]. The crown chakra is 

purple and vibrates at 963 Hz to the central part of the brain. 

Such healing therapy is responsible for relaxation, mindfulness, 

deep meditation, etc. [31]. The crown chakra can be awakened 

by resonating it with the specific frequency produced by a 

particular sound. In the yogic tradition, around 963 Hz 

represents the crown chakra frequency. For this reason, a 963 

Hz OM chanting frequency was chosen to induce a powerful 

state of meditation. In EEGLAB, a study with 27 test subjects 

and three different task conditions (rest, meditation, and 

arithmetic) was created, and ERP and PSD comparisons were 

analyzed. The paper is as follows: Section two consists of 

materials and methods, experiment design, participants, data 

acquisition system, electrode placement, and data processing. 

Section three contains the result. While sections four and five 

consist of discussion and conclusion, respectively. 
 

MATERIALS AND METHODS 
 

The specifics of the experiment design are well explained in 

this section, along with the data acquisition system and the 

processing techniques. 
 

Task Design: The task design was a crucial step. The authors 

designed a specific cognitive task based on some textbooks and 

research [32-34]. Working minds a Practitioner's Guide to 

Cognitive Task Analysis by Robert R Hoffman [35] and a 

handbook on Cognitive Task Design: Human Factors and 

Ergonomics by Hendrik H. [36] helped us to design the 

cognitive task. All the factors, conditions, advantages, and 

disadvantages from the literature above were considered to 

design the task. The designed cognitive task consists of three 

states, i.e., rest, meditation, and arithmetic. The study details 

are summarized in Table 1. 20 minutes of data was collected 

for each condition. At rest, the test subjects were asked to close 

their eyes, feel free and de-attach themselves from the outside 

world interrupts and let go of thoughts. In the induced 

meditation state, subjects must listen to an Om chant at a 

specific frequency (963 Hz) for 20 min with closed eyes. 

During the arithmetic state, subjects were asked to subtract five 

from 100, and if they reached zero or lost track, they had to 

start again from 100. To make the length of the different states 

comparable, 5 minutes of data were analyzed for each state. 
 

Table 1 Cognitive task states 
 

Condition Preparation Delay in task 

Rest 
Made for relaxing for 20 minutes 

(eyes closed) 
Ten minutes 

delay has been 

provided between 

the two different 
states of the task. 

Meditation 
Made to hear Om chanting (963Hz.) 

for 20 minutes(eyes closed) 

Arithmetic 
Performed  arithmetic operation for 

20 minutes (eyes closed) 
 

Participants: 36 subjects volunteered to complete the study. 

Out of 36 subjects, outliers were found in 9 subject data. Some 

did not focus on the task, while the electrode placement was 

incorrect in some cases. For this reason, 27 subjects (N=27, 

S.D.=2.18, Mean=30.81, Variance=4.77) were found suitable 

for the data acquisition process. From 27 test persons, 18 men 

and 9 women between the ages of 22-36 years. The 

advertisement was published in templates pasted within the 

university premises for this voluntary task. All the subjects 

were graduates; some were postgraduate and Ph.D. students. 
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Subjects signed a consent form where they mentioned whether 

they have presently any physiological problem or faced it in the 

past, either taking any medication or suffering from any illness. 

Nobody was an alcoholic; one subject was left-handed out of 

36 subjects. Before starting the data acquisition process, the 

subjects were asked how they feel, i.e., anxious, depressed, or 

normal. If the subject answered other than normal, the data 

acquisition process was postponed until the particular subject 

felt normal. Table 2 illustrates the demography of the subjects. 

The data was collected between November 2020 and January 

2021. The data was collected on non-working days (Saturday 

and Sunday) from 4.00 p.m. to 7.00 p.m. IST at SLIET 

University. 

 
 
 
 
 
 
 
Data Acquisition System & Electrode Placement 
 

The data acquisition was completed using BIOPAC MP-160 

with 27 university students for the designed task. Two channels 

of BIOPAC MP-160 were used for the EEG acquisition 

process. EEG Electrodes were placed according to the specific 

task requirements. The electrodes were placed according to the 

international 10-20 system [37], as shown in Figure 1. The size 

and shape of the test subject's heads were measured before 

attaching the electrodes. The scalp was measured individually 

by CADWELL tape, and electrodes were placed with the exact 

measurement of the dimensions of the individual scalp. Several 

calculations were carried out with each subject for six different 

frontal positions.  

 
 

Figure 1 Electrode positions according to the international 10-20 system. 
 

The placement of the electrodes was rechecked before starting 

the next measurement of the next condition if any of the 

connections shifted or loosened. First, the EEG electrodes were 

placed in Fp1 and Fp2 positions, and the task was carried out 

and the data recorded. The same pattern was repeated with Af3, 

Af4, and Af7, Af8 electrode positions. The surfaces were 

cleaned with a disinfectant to minimize the impedance between 

the electrode and the scalp. In most cases (i.e., most male 

subjects), it was relatively easy to place the electrodes in 

different positions, but in some cases (e.g., female subjects), 

the placement of the electrodes was difficult at Af3, Af4, Af7, 

Af8 positions due to the interference of hairs. All participants 

were asked to come with a cleansed scalp with a branded hair 

shampoo to reduce excess oil and dirt from the scalp. Therefore 

several attempts have been made to extract the data from these 

positions.  
 

Processing of data: In this study, the features like ERP, SPD, 

and alpha-theta peaks were extracted and processed using 

EEGLAB. The three attained features have been compared in 

the three different states: rest, meditation, and arithmetic. The 

raw EEG data was loaded in EEGLAB, then re-sampled at 256 

Hz, and basic filtering applied from 0.5 to 40 Hz, then 

decomposed in different frequency bands to analyze the task in 

these frequency bands. Artifacts are a common occurrence 

while recording the data. Hence they cannot be ignored.  

 

 

 

 

 

 

 

 

 

The typical artifacts in the case of EEG signals may be 

differentiated into three categories: physiological, habitual, and 

external. In the physiological category, tingling, swallowing, 

twitching of muscle, and sweating artifacts were found in a few 

subjects. 

 
 

Figure 3 Flow chart of the methodology and signal processing 
 

Whereas instructions were given to every subject to control 

physical activities during the task, but when observed closely, 

it was found that during the arithmetic condition, some subjects 

were not able to control their habitual behavior, i.e., counting 

Table 2 Subjects demography 
 

Total no. of subjects Gender/ Age Education status The present state of mind Alcoholic 
Any physiological 

problem 
Any medication 

27 (taken data of 36 
subjects, 9 were 

found not suitable. 

Out of 27 

subjects,18M, nine F, 

age ranges between 22 
to 36 years 

Graduation, Masters's, and 

Ph.D. For better results, we 

chose only engineering 
graduates. 

Depressed, stressed, or 

feeling normal. 
None None 

One was diabetic type 

2, so excluded from the 

data acquisition 
process. 
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on fingers, frowning, feet movement, and too much movement 

of the eye and the tongue. Besides this, the power line 

interference was also considered the reason for the external 

artifacts. To minimize the artifacts, the subjects followed the 

standard instructions (i.e., not too much movement of eye or 

tongue, not talking and chewing, and not moving any body part 

during the task). Still, there were also interfering signals from 

alternating current power noise and fluorescent light. Such 

noises may result in erroneous brain wave measurement results 

or poor performance in brain-computer interfaces [38]. The 

eye-blinking artifacts, artifacts owing to heartbeats, and other 

noises have been removed by applying independent component 

analysis (ICA). ICA is a machine learning technique that 

separates independent sources from a mixed signal; it 

decomposes the composite signal into independent sources. 

Eye blinking signals primarily have a low frequency of less 

than 4 Hz, which affects the Fp1 and Fp2 channels, and they 

are the most interfering signal for EEG measurement because 

of their large amplitude. The frequency of EMG signals is 

typically considerably higher than that of brain waves, and 

these signals were mostly removed during EEG signal 

processing. Now the comparisons have been made based on the 

alpha and theta bands for the three different conditions of the 

cognitive task. After artifact rejection, short-time Fourier 

transform (STFT) was used to analyze the data in the frequency 

domain. Figure 3 illustrates the flow chart of the methodology. 

The instantaneous peak frequencies in the alpha (8-14Hz) and 

theta band (4-8 Hz) were detected for each 1-sec epoch of 

transformed data in MATLAB (version r2017b) using the local 

maxima functions, i.e., findpeaks [39], After finding the peak 

values of the ratio of alpha and theta peak frequencies have 

been calculated. 
 

RESULT 
 

This section discussed the alpha-theta correlations during the 

three different task conditions. Alpha-theta peak value-based 

comparisons and ERP, PSD-based analysis has been presented 

here. 
 

Primarily Analysis (Alpha–Theta correlations during the 

task): After preprocessing and decomposition of data into alpha 

(8-14Hz) and theta (4-8Hz) frequencies, the computation of 

their peaks have been carried out for the different task states 

(rest, arithmetic and meditation). Table 3 summarized the 

approximate peak values of alpha and theta frequencies and 

their ratio at Fp1 and Fp2 electrodes positions. For example, 

when subject S0 was instructed to relax, the resting position 

alpha and theta frequencies calculated were 11.2 Hz and 6.2 

Hz, respectively. During meditation, the alpha frequencies 

significantly decreased from 11.22 Hz to 9.71 Hz, and the theta 

frequency reduced from 6.2 Hz to 4.6 Hz. During the arithmetic 

task, the alpha frequency suddenly rises from 11.2 Hz to 13.6 

Hz, and the theta frequency varies from 6.2 Hz to 7.7 Hz. It 

signifies that during the meditation state, the brain frequency 

decreases, while in any arithmetic state, the frequency increases 

for the subject S0. For the same subject, the alpha-theta cross-

frequency ratio was approximately 1.8 Hz at rest, 2.1 Hz at 

meditation, and 1.7 Hz at arithmetic. Similarly, all 27 subjects 

have been analyzed, and it has been observed that during rest, 

the alpha-theta cross frequency (alpha:thera:2:1) occurs six 

times (i.e., for subjects S2, S3, and S10, S14, S18 and S26). In 

the meditation state, the alpha-theta cross-frequency 

occurrences have been found only twice (for subject S6 and 

S23), and in the arithmetic state, it happens nine times (for 

subjects S3, S5, S6, S11, S15, S17, S22, S23 and S26). 

From these findings, it is clear that: 
 

% of alpha-theta cross-frequency occurrences during arithmetic 

state= 9*100/27=33.33 

% of alpha-theta cross-frequency occurrences during 

meditation state=2*100/27=7.40 

% of alpha-theta cross-frequency occurrences during rest state= 

6*100/27= 22.22 
 

The above calculations show that the alpha-theta cross-

frequency percentage value during arithmetic state (i.e., 

33.33%) is far greater than the meditation state (i.e., 7.40%). 

Conversely, the alpha-theta cross-frequency percentage during 

the rest state (i.e., 22.22%) is greater than meditation State (i.e., 

7.40%). The calculations made during the experiments comply 

with the cross-frequency occurrence pattern, i.e., arithmetic> 

rest>meditation. 
 

The box plot of the dataset is shown in Figure 4. It can be 

observed that the mean values of meditation and rest state data 

were found less in comparison to the arithmetic state data. 

Whereas the width of the meditation box seems more than the 

remaining two boxes, which indicates the data range of the 

meditation state is more than the other two states. The outlier 

values have also been found in some states of the experiment. 

These outlier values may be caused due to some instantaneous 

distractions during the task or when the subject loses 

concentration and again immersed in the same task state. We 

had tried our best that every subject emerged fully with the task 

states, but no one can control all his thoughts for a given task 

within a given time.  
 

Table 3 Peak frequencies values (Hz) values (approx.) of 

alpha, theta, and their ratios in three different task states, the 

electrodes were placed at Fp1, Fp2 position. 
 

Sub 
Rest Meditation Arithmetic 

α(M) θ(M α/θ(M) α(M) θ(M) α(M)/θ(M) α(M) θ(M) α(M)/θ(M) 

S0 11.2 6.2 1.8 9.7 4.6 2.1 13.6 7.7 1.7 
S1 10.9 6.8 1.6 8.6 4.5 1.9 11.7 5.3 2.1 

S2 9.3 4.6 2.0 7.3 4.5 1.6 12.1 6.3 1.9 

S3 11.3 5.6 2.0 7.9 4.6 1.7 13.3 6.6 2.0 
S4 10.7 6.5 1.6 8.3 5.2 1.6 12.3 5.9 2.1 

S5 9.7 7.5 1.3 9.0 5.2 1.7 11.7 5.8 2.0 

S6 13.1 7.3 1.8 9.8 4.9 2.0 12.1 6.0 2.0 
S7 8.9 4.5 1.9 7.6 4.0 1.9 11.2 5.3 2.1 

S8 9.3 4.9 1.9 11.2 6.2 1.8 11.0 6.1 1.7 

S9 10.8 6.7 1.6 10.9 5.2 2.1 9.3 5.2 1.8 
S10 9.7 4.8 2.0 10.2 7.8 1.3 12.5 6.5 1.9 

S11 8.9 5.2 1.7 7.2 5.1 1.4 13.7 6.8 2.0 

S12 9.3 6.6 1.4 11.3 6.6 1.7 11.7 7.3 1.6 
S13 11.7 5.5 2.1 9.7 4.6 2.1 10.3 5.7 1.8 

S14 12.9 6.4 2.0 12.6 6.6 1.9 9.7 5.1 1.9 

S15 7.8 4.1 1.9 13.1 7.2 1.8 11.6 5.8 2.0 
S16 9.4 6.2 1.5 8.9 5.9 1.5 12.6 7.4 1.7 

S17 12.4 7.3 1.7 10.6 5.0 2.1 13.6 6.8 2.0 

S18 11.8 5.9 2.0 11.3 5.9 1.9 10.9 6.8 1.6 

S19 12.4 7.7 1.6 11.0 5.0 2.2 13.1 7.3 1.8 

S20 13.4 7.0 1.9 12.2 6.4 1.9 11.2 5.1 2.2 
S21 12.9 5.8 2.2 9.9 7.6 1.3 9.9 6.6 1.5 

S22 11.6 6.4 1.8 8.9 4.9 1.8 11.7 5.8 2.0 

S23 8.9 4.2 2.1 11.9 5.9 2.0 11.9 5.9 2.0 
S24 10.9 7.3 1.5 9.7 6.0 1.6 9.9 5.8 1.7 

S25 10.7 6.6 1.6 10.3 7.9 1.3 13.1 6.2 2.1 

S26 11.7 5.8 2.0 12.5 5.6 2.2 12.1 6.0 2.0 
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Figure 4 Box Plot of the data when the electrodes at Fp1 and Fp2 positions. 
 

Similarly, Table 4 summarizes the peak frequencies in alpha 

and theta bands and their ratios when the positions of 

electrodes were at Af3 and Af4. From the below findings, it is 

evident that the cross-frequency corrilations (alpha: theta: 2.1) 

were maximum in the arithmetic state i.e. 11 times ( for 

subjects S0, S3, S7, S8, S9, S13, S15, S18, S19, S23 and S25) 

and minimum in the case of meditation i.e. 2 times (for subjects 

S5 and S12)  whereas, in the rest state, it has been found 7 

times (for subjects S3, S6, S10, S13, S19, S20 and S24). 

From these findings, it is clear that: 
 

% of alpha-theta cross-frequency occurrences during arithmetic 

state= 11*100/27=40.74 

% of alpha-theta cross-frequency occurrences during 

meditation state= 2*100/27=7.40 

% of alpha-theta cross-frequency occurrences during rest state= 

7*100/27=25.92 
 

From the above calculations, it was observed that the 

occurrence of the cross-frequency is maximum in the 

arithmetic state, i.e., 40.74, and minimum in the case of the 

meditation state, i.e.7.40.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, the rest state is found in between these two states, 

i.e., 25.92. Thus the cross-frequency occurrence pattern hass 

been found as Arithmetic> Rest>meditation. The box plot of 

the dataset is shown in Figure 5. It can be observed that the 

mean values of the meditation and rest state data were found 

less than the arithmetic state data. Whereas the width of the 

meditation box and arithmetic box appear larger than the rest, 

suggesting that the data range of meditation and arithmetic was 

found more than the rest. The outlier values were also found in 

some states of the experiment. The source of these outliers has 

already been explained.  
 

 
 

Figure 5  Box Plot of the data when the electrodes were at Af3 and Af4 

positions. 
 

Similarly, Table 5 illustrares the alpha and theta band 

frequencies' peak values and their ratios at the electrodes 

positions Af7 and Af8. The maximum occurrence of alpha-

theta cross frequencies was found in the arithmetic state (nine 

times), while the resting and meditation states have seen the 

same number of cross-frequency occurances (five times) . 
 

% of alpha-theta cross-frequency occurrences during arithmetic 

state= 9*100/27=33.33 
 

% of alpha-theta cross-frequency occurrences during 

meditation state= 5*100/27=18.51 
 

% of alpha-theta cross-frequency occurrences during rest state= 

5*100/27=18.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Peak frequencies (in Hz) values (approx.) of alpha, theta bands, and their ratios in three different task conditions, the 

electrodes were placed at Af3, Af4 position. 
 

Sub 
Rest Meditation Arithmetic 

α(M) θ(M) α(M)/θ(M) α(M) θ(M) α(M)/θ(M) α(M) θ(M) α(M)/θ(M) 

S0 8.9 5.5 1.6 7.9 4.9 1.6 13.2 6.6 2.0 

S1 11.2 5.8 1.9 9.2 4.8 1.9 12.3 6.8 1.8 

S2 11.7 6.8 1.7 7.6 5.0 1.5 12.9 8.0 1.6 

S3 9.3 4.6 2.0 8.9 5.5 1.6 11.9 5.9 2.0 

S4 8.9 5.6 1.6 9.8 5.1 1.9 10.2 5.3 1.9 
S5 11.2 6.5 1.7 10.1 5.0 2.0 10.6 6.6 1.6 

S6 9.6 6.4 2.0 9.7 5.7 1.7 12.9 8.6 1.5 

S7 10.3 5.7 1.8 10.9 7.2 1.5 11.8 5.9 2.0 
S8 10.9 5.7 1.9 11.3 6.2 1.8 11.9 5.9 2.0 

S9 11.3 6.6 1.7 12.1 7.5 1.6 12.3 6.1 2.0 

S10 9.4 4.7 2.0 9.5 5.9 1.6 9.2 5.1 1.8 
S11 10.7 5.6 1.9 7.2 4.0 1.8 8.1 4.2 1.9 

S12 10.4 7.4 1.4 11.7 5.8 2.0 12.2 7.1 1.7 

S13 11.1 5.5 2.0 12.2 6.4 1.9 11.5 5.7 2.0 
S14 13.4 7.4 1.8 9.9 5.5 1.8 13.7 7.6 1.8 

S15 7.9 5.6 1.4 10.5 5.0 2.1 11.2 5.6 2.0 

S16 8.5 4.4 1.9 13.1 6.8 1.9 9.6 6.0 1.6 
S17 9.7 6.9 1.4 8.9 6.8 1.3 8.7 6.0 1.4 

S18 10.6 6.2 1.7 10.3 5.4 1.9 11.5 5.7 2.0 

S19 12.5 6.2 2.0 7.6 4.7 1.6 11.8 5.9 2.0 

S20 11.3 5.6 2.0 9.4 6.7 1.4 13.6 7.1 1.9 

S21 9.0 5.6 1.6 10.9 6.4 1.7 9.8 5.7 1.7 
S22 8.6 4.5 1.9 8.2 4.5 1.8 10.5 7.5 1.4 

S23 7.6 5.8 1.3 11.9 7.0 1.7 11.6 5.8 2.0 

S24 11.9 5.9 2.0 12.0 6.3 1.9 9.5 5.5 1.7 
S25 12.3 6.8 1.8 9.5 5.5 1.7 10.8 5.5 2.0 

S26 9.2 6.1 1.6 11.6 7.7 1.5 13.2 7.3 1.8 
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In this case, it was found that the maximum percentage of the 

cross-frequency is during the arithmetic condition (i.e. 33.33). 

At the same time, the meditation and resting states both have 

the same percentage of occurrence of cross-frequency, i.e., 

18.51. Thus the cross-frequency occurrence pattern was found 

Arithmetic>rest=meditation. The box plot of the dataset is also 

shown in Figure 6. It can be observed that the mean values of 

the meditation and resting state data were found less than the 

arithmetic state data. While the width of the rest box seems 

more than the remaining two boxes, which indicates the data 

range of the rest state is more than the other two. 
 

The findings revels that at all the three positions (i.e. Fp1, Fp2, 

Af3, Af4, Af7 and Af8) the maximum number of cross-

frequency occurrences has been found in the case of arithmetic 

state The theta values are constantly lower in all three positions 

in the meditation state while the alpha values are constantly 

high in the arithmetic state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 Box Plot of the dataset when the electrodes at Af7 and Af8 positions. 

 

 

Secondary analysis: In the secondary approach, the authors 

simultaneously compared the ERPs and SPDs under different 

task conditions for all 27 test subjects. 
 

ERP-based comparisons: After a comparative study of peak 

alpha, theta, and cross frequency corrilations of the individual 

test subject, the study of all 27 subjects was created in 

EEGLAB. The comparisons were carried out about the ERPs 

and PSDs for all 27 subjects, and the comparison results are 

shown in the figures. The study creation option in EEGLAB 

provides us to analyze the group dataset simultaneously. An 

EEGLAB study contains a description and links to data 

contained in many epoched or continuous data sets, such as A 

set of the dataset from a group of subjects in one or more 

conditions of the same task or performing different tasks in the 

same or different sessions. A study may be created to manage 

and process the data recorded from multiple subjects, sessions, 

and conditions of an experimental study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The present study provided the toolbox of 27 test persons with 

three states (arithmetic, meditation, and rest).  
 

After uploading all the data in a SET file format, the options 

for comparing Power Spectral Density (PSD) and event-related 

potentials (ERP) concerning frequency and time are available. 

The analysis shows the differences among the three conditions, 

i.e., rest, arithmetic, and meditation. 

 

 

Table 5 Peak frequencies (approx.) of alpha-theta and their ratios in three different states (rest, meditation, 

and arithmetic), the electrodes were placed at Af7, Af8 positions. 
 

Sub: 
Rest Meditation Arithmetic 

α(M) θ(M) α(M)/θ(M) α(M) θ(M) α(M)/θ(M) α(M) θ(M) α(M)/θ(M) 

S0 10.1 5.9 1.7 7.5 4.1 1.8 12.3 6.1 2.0 

S1 11.0 6.8 1.6 8.3 4.1 2.0 13.2 6.2 2.1 
S2 8.9 4.6 1.9 7.9 4.1 1.9 13.7 7.2 1.9 

S3 9.2 4.6 2.0 9.1 5.6 1.6 11.8 7.3 1.6 

S4 7.8 4.3 1.8 10.4 6.9 1.5 10.2 6.8 1.5 
S5 7.4 4.1 1.8 9.9 5.5 1.8 9.9 5.5 1.8 

S6 8.4 4.2 2.0 10.2 5.6 1.8 10.0 5.0 2.0 

S7 8.2 5.4 1.5 10.3 6.4 1.6 11.7 6.1 1.9 

S8 11.2 6.5 1.7 11.2 7.0 1.6 12.8 6.4 2.0 
S9 12.0 6.3 1.9 7.5 4.6 1.6 11.7 7.3 1.6 

S10 11.1 6.1 1.8 9.6 4.8 2.0 9.8 6.5 1.5 

S11 8.8 5.5 1.6 11.2 6.5 1.7 10.5 6.1 1.7 
S12 13.0 6.5 2.1 13.4 7.4 1.8 8.9 4.6 1.9 

S13 11.8 6.2 1.9 9.2 5.7 1.6 11.2 5.6 2.0 

S14 11.2 7.2 1.5 8.7 4.1 2.1 11.7 5.8 2.0 
S15 10.4 5.5 1.8 12.4 6.2 2.0 13.6 6.4 2.1 

S16 11.6 5.8 2.0 11.9 7.4 1.6 8.3 5.5 1.5 

S17 9.1 4.8 1.8 13.2 6.6 2.0 12.6 7.0 1.8 
S18 8.9 4.6 1.9 9.0 4.7 1.9 11.9 5.9 2.0 

S19 13.5 7.9 1.7 9.7 5.7 1.7 8.9 4.6 1.9 

S20 8.4 4 2.1 10.8 7.2 1.5 7.6 4.7 1.6 
S21 7.3 4.8 1.5 10.1 5.0 2.0 11.1 5.5 2.0 

S22 9.0 6.9 1.3 8.3 4.6 1.8 13.7 7.2 1.9 
S23 10.7 6.2 1.7 13.4 7.0 1.9 9.0 6.4 1.4 

S24 11.4 5.7 2.0 7.8 6.0 1.3 12.3 6.1 2.0 

S25 10.6 5.3 2.0 8.6 5.0 1.7 7.9 4.6 1.7 

S26 9.5 6.7 1.4 10.8 7.2 1.5 12.6 6.3 2.0 
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(a) 

 

 
(b) 

 

Figure 7 illustrates the ERP vs time variations in three different states (rest, 

meditation, arithmetic) (a) at Fp1 (b) at Fp2 
 

 
(a)

 
(b) 

Figure 8 illustrates the ERP vs time variations in three different states (rest, 

meditation, arithmetic) (a) at Af3 (b) at Af4 
 

 
(a) 

 
(b) 

 

Figure 9 illustrates the ERP vs time variations in the three different states (rest, 
meditation, arithmetic) (a) at Af7 (b) at Af8 

 

The ERP-based study analysis shows that the maximum values 

of ERPs were reported during an arithmetic operations. The 

ERP values are higher than the rest and meditation (at all the 

electrode positions). A comparison between the meditation 

state and rest has shown that the meditation state is more 

sluggish than the rest state. The Table 6 illusttes the maximum 

variations in ERPs in different electrode postions. The 

maximum variations have been seen in the arithmetic positions 

irrespective to all electrode positions. The ERPs in rest 

positions were found in between the arithmetic and meditation 

states. In the meditation state the ERPs were found low in all 

the electrode positions. It clearly indicates that the meditation 

state is sluggish than the rest and arithmetic states. 

 

 

 
 
 
 
 
 
 
 
 
 

PSD-based comparisons: When analyzing the power spectral 

densities (PSDs) of the three different states, it has been found 

that the peak  PSD values occurred during the arithmetic state. 

The arithmetic state PSD values were slightly higher in 

comparison to the other two states, i.e., rest and meditation, 

whereas in rest and meditation states the results were 

approximately similar. In comparing PSD between meditation 

and rest state, it has been found that human brain was more 

relaxed in the state of meditation and this state was more 

sluggish than the other two. 

Table 6 Peak ERPs during different task conditions 
 

Electrode 

posiions 
Task state 

Peak (approx.) ERP 

values 

Fp1, Fp2 
Arithmetic 6.1, 5.9 

Rest 4.2, 4.0 

Meditation 3.7, 3.2 

Af3,Af4 
Arithmetic 4.9, 4.2 

Rest 3.4, 3 

Meditation 2.8, 2.7 

Af7,Af8 

Arithmetic 6.0, 5.0 

Rest 3.9, 4.9 
Meditation 3.9, 2.9 
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(a) 

 
(b) 

Figure 10 PSD vs frequency variations in the three different states (rest, 
meditation, arithmetic) (a) Fp1 (b) Fp2 

 

 
(a) 

 
(b) 

Figure 11 PSD vs frequency variations in the three different states (rest, 

meditaion, arithmetic) (a) Af3 (b) Af4 

 

 
(a) 

 
(b) 

 

Figure 12 PSD vs frequency variations in the three different states (rest, 
meditation, arithmetic) (a) Af7 (b) Af8 

 

In Figure 10, at positions Fp1, Fp2 the PSD (peak values) of 68 

and 67 were found in the arithmetic state, while these values lie 

between 60 and 65 in the resting and meditation states. 

Similarly in Figure 11 PSD peaks were 65 and 64  at positions 

Af3, Af4 during the arithmetic task, while the rest and 

meditation-related PSD were slightly lower, i.e., close to 60. In 

Figure 12, similar patterns were found when the electrodes 

were placed at Af7 and Af8, , i.e., the maximum value of the 

PSD in the case of the arithmetic state and the resting and 

meditation states showing fewer PSD values. In most of these 

cases, a steep drop is seen after the frequency of 40 Hz.  
 

DISCUSSION 
 

This study examined the transient relationship (alpha: theta: 

2:1) during different states of the brain (i.e., rest, arithmetic, 

meditation) for a designed cognitive task. The analysis results 

suggested that during arithmetic conditions, transient alpha-

theta (2:1) were found more frequently than the other two states 

(i.e., rest and meditation). Also, the peak values of alpha and 

theta appeared high during the arithmetic state. The experiment 

focused mainly on the frontal lobe. The entire-brain region has 

been considered in previous studies and types of literature [28, 

40]. Brain oscillations are non-stationary, so the condition of 

this transient relationship between alpha and theta peak values 

was instantaneous [41, 42]. The study suggested that the 

increase in cognitive demand (i.e., arithmetic) significantly 

increases the occurrences of alpha-theta transient relationship 

for their peak frequencies. Previous studies illustrated that the 

transient alpha-theta corrilation-based comparison for 

arithmetic and rest conditions increased the frontal region's 

activity. In contrast, the central and left temporoparietal region 

was found more activated for rest and meditation conditions. 

The transient arithmetic relationship was found in the frontal 

area [28]. Working memory and execution control has been 

related to the cognitive demand of the experiment [43-45], It 

can be correlated that the maximum manipulation and 

execution in mind were during arithmetic operation [46-49] and 

during meditation state, the same manipulation and execution 

has been found less because the brain was trying to be calm or 

mental emptiness [50-52]. The overall conclusion was that 

alpha-theta cross-frequency appearance for the three different 

conditions in a manner viz: arithmetic>aest>meditation [28]. In 

our experiment, Om chanting sound (963Hz) has been used to 

achieve mental emptiness instead of meditation practice. Here, 

manipulation and execution happened in the rest condition but 

less than the arithmetic state.  
 

Previous studies suggest that the maximum occurrences of the 

alpha-theta cross-frequency relationship happen when the alpha 



International Journal of Recent Scientific Research Vol. 14, Issue, 08 (A), pp. xx-xxx, August, 2023 

 

    4001 | P a g e  

range is 11-12 Hz, and the theta range is 4-6 Hz [28, 53]. The 

authors claim comparable results with the six electrodes on the 

frontal lobe. Findings also indicated maximum episodes where 

the cross-frequency relationship occurred (in arithmetic 

conditions) with alpha values between 9-12 Hz. A previous 

work illustrated that effortful cognition increased the alpha 

peaks frequency [54], decreases theta peak frequency [28], and 

an increase in alpha-theta cross-frequency relationship [55]. 

The author presents maximum numbers of cross-frequency 

alpha-theta corrilations in arithmetic conditions (at all electrode 

positions). Another insight reflected that maximum alpha-theta 

cross-frequency episodes were found when the electrodes were 

placed at Af3, and Af4 positions, indicating that Af3 and Af4 

positions are maximally involved in the task process than the 

other two electrodes positions. In the ERP and PSD 

comparisons, the maximum variations in arithmetic conditions 

and the maximum peak values of PSD in arithmetic state also 

supported the previous studies. The result suggests that neural 

oscillations related to the arithmetic condition are higher than 

the other two (i.e., rest and meditation). 
 

CONCLUSION 
 

The experiment outcomes demonstrate how the alpha-theta 

cross-frequency varies with the different mental states. The 

cross-frequency corrilations between alpha theta rhymes were 

enhanced during an effortful cognitive task, whereas it 

decreases at the state of meditation. This work analyzes and 

distinguishes the various states of mind during a designed 

cognitive task (rest, arithmetic, and induced meditation). The 

participants induced the meditation by listening to OM 

chanting of 963 Hz, i.e., the crown chakra frequency. The 

arithmetic operation was a simple mathematical problem. The 

study concluded that alpha theta cross-frequency occurrences 

were maximum during arithmetic operation, i.e., 33%, 40.74%, 

and 33.33%. The alpha theta cross-frequency in the rest state is 

lower than the arithmetic task, i.e., 22.22%, 25.92%, and 

18.51%. Moreover, the Alpha theta cross-frequency in the 

meditation state is lower than the rest state, i.e., 7.40%, 7.40%, 

and 18.51%. The study concluded that cross-frequency 

corrilations were enhanced during effortful cognition, whereas 

it decreases at the state of mental emptiness. It was found that 

alpha-theta cross-frequency occurrences are 40.74% 

(maximum) when electrodes are placed at Af3 and Af4. The 

comparisons based on ERPs and PSDs have also been 

introduced for the subjects. The results showed that the 

meditation state is more sluggish than the arithmetic and rest 

one. In the future, upcoming researchers may be used this 

approach to classify the different states of brain and an EEG-

based dual-channel device could also be framed in the form of 

hardware. The task may be redesigned with more different 

states of brain. 
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