
1 

Prof. Bhushan Trivedi          Module 15 

Module 15  
Arrays and Strings 
Introduction 
The C++ language is an extension of C and thus carries the legacy of the C language. One of 

the legacies is the arrays. The array is a simple structure containing a collection of 

homogeneous items together as a single unit. A great feature of the arrays is the ability of 

the programmer to manipulate the complete collection using the index value and some 

looping structure. Another important legacy of C is the string. The string in C is an array of 

characters terminated by a typical sentinel value called null (‘\n’). The C string library 

contains many functions for dealing with C type strings, for example, copy one string into 

another, comparing two strings with each other, finding out if there is a typical substring 

which is part of a given string etc. The arrays are part of the C++ design and they are used 

like they are in C. However, the C type strings are not preferred in C++ as a better form of 

string is provided by the C++ designers. The C++ string is basically an object of the class 

(which is also known as a string class) available to C++ programmers. C++ contains a new 

library called standard template library or STL which contains many other classes apart from 

the string. The string is one of the most popular classes of the STL. The string class has many 

advantages as compared to the C type string. We will throw some light on how the string 

objects are better than C type strings in this module. We will also explore two important 

things in this module. We will see how arrays are extended in C++ to have objects as their 

elements. We will also learn about how the C++ string objects are used and how one can 

program using the C++ string objects and their member functions.  

 

Before we embark on the discussion of string objects, let us be clear that the C language 

array structure and strings are assumed to be known. If you have no idea about C arrays and 

strings, it is strongly recommended that you study them before attempting to learn the 

content of this module.  

 

Arrays of objects 
The arrays in C++ can contain everything a C array could, additionally, it can also contain 

objects as its members. An array of objects is basically objects stored as elements of arrays. 

Let us look at an example to illustrate the point. Look at the program 15.1 which describes a 

class called players. There are 3 data members and two function members of this class. 

Every player has a typical jersey number, name and address associated with him. We have 

defined two function members, one which takes the details of the member (all three data 

member values) and the other displays the values of those data members. You can see that 

both functions are quite an integral part of most of the classes that we have defined. When 

we study operator overloading, we will see how can we simplify this process by overloading 

the operators << and >>.  The definition of the class contains both private and public 



2 

Prof. Bhushan Trivedi          Module 15 

sections exactly like other class definitions that we have seen in previous modules. We also 

access members defined in public sections using the dot operator like the previous modules 

in this case as well. The additional parts are the array definition and using the members of 

an array of objects as any other object. Here is the program for your perusal. We can see 

how the objects which are part of the array are accessed and used in the program. 

 
//Program 15.1 
// ObjectArray

#include <iostream>
#include <string>
using namespace std;

class Player
{
private:
    int JerseyNo;
    string pNm;
    string pAdd;
public :
    void Get(int Jersey, string t_pNm, string t_pAdd)
    {
        JerseyNo = Jersey;
        pNm = t_pNm;
        pAdd = t_pAdd;
    }
    
    void pDisplay()
    {
        cout << "Jersey Number is " << JerseyNo << "\n";
        cout << "Player name is " << pNm << "\n";
        cout << "Player Address is " << pAdd << "\n";
    }
};

int main() {
    
    int i;
    
    Player pArray[4];
    
    pArray[0].Get(1,"Virat Kohli","India");
    
    pArray[1].Get(2,"Chris Gayle","West Indies");
    
    pArray[2].Get(3,"A B Deviliers","South Africa");
    
    pArray[3].Get(4,"Steve Smith","Australia");
   
    for (i = 0; i < 4; i++)
    {
        pArray[i].pDisplay();
    }
    
    return 0;

} 

Description 

Let us try to see the program 15.1 from the point of view of our understanding of arrays. We 

have defined a class called a player with three data members and two member functions in 



3 

Prof. Bhushan Trivedi          Module 15 

the beginning. An important statement follows the main definition. 

Player pArray[4]; 

This statement is quite similar to statements which define an array in C, except for the case 

that the elements of the array are of type Player here. You can see that the definition has 

nothing new. Now we have pArray as an array. Every element is an object of type Player now.  

That means pArray [0] is a Player, pArray [1]   is a  Player and so on. We need to treat those 

elements as objects of type Player now. We can do so by calling member functions in the 

following fashion.  

 
pArray[0].Get(1,"Virat Kohli","India"); 

pArray[i].pDisplay(); 

Kindly look at both the statements. In the first statement, an int constant is used as an index 

and in the second case an int variable is used but in both cases, we are able to access an 

array element with dot notation (like we did earlier) to call a member function using that 

syntax.  

Thus, we can use arrays like we did with C, apart from all valid C data types, objects can also 

be an element of the C++ array. Array elements can be used like normal objects and we can 

use dot notation to access public data and function members.  

Another point. You probably have noticed that we have used following statements to define 

two data members of the Player class.  

 string pNm;

     string pAdd; 

Which type of string are these? They are not arrays like in C, neither they have the null 

character to indicate the end of the string. They are objects of type string. The string is a 

class from STL (Standard Template Library) from C++. We will study STL in modules 16,17 

and 18 at a later stage but let us try to see how can we define and use string objects in C++. 

 

Need for the string objects 
C Type strings are the character arrays with the null character as an indicator to the end of 

the string. This mechanism is used by C to have string variables and also have many 

functions to manipulate these types of strings. Let me repeat, the C-Type string objects are 

still available to C++, we have this additional construct at our disposal while dealing with 

strings. This option, the string object, is also called the C++ strings, they are the objects of 



4 

Prof. Bhushan Trivedi          Module 15 

STL1 the class also called string. C++ strings is a better option than the C type strings and 

that is the reason why it is chosen to be used by most developers instead of C type strings. 

 

C++ strings, as the ensuing discussion will prove, is a better option than the C type strings 

and that is the reason why it is chosen to be used by most developers if not all. Let us see 

shortcomings of the string representation as character arrays. We need to have a string 

library and the prototypes to use the C++ strings. Here is what we have done at the 

beginning of our program 

 
#include <string>

 

Above statement inserts string prototypes in the std namespace so we can use them. The 

discussion about what is the std namespace and how these insertion works are beyond the 

scope of this course. You may refer to the reference 1 for more information on 

namespaces2.  

 

Limitations of string representation as character arrays 
If we need to define a string in C, we can do it as follows. 

 
char PNm[30];

char PAdd[60];

 

So we actually define an array of characters. We can use these names (PNm and PAdd) as 
strings and use them in normal operations. However, there are a few limitations of this 
approach. Let us try to see. 
 

Non-availability of == operator 
We cannot compare strings like normal variables. For example, following statements are not 
allowed. 
 
if (PNm == PAdd) ….

We cannot compare strings using the == operator. The solution is to use a function called 

strcmp in a fashion which is not as straightforward as the == operator. One typical problem 

with the strcmp function is that when the comparison is right it returns a value zero and we 

need to negate the output to check if the strings are the matching. For example, following is 

the normal statement in C. 

 
if !(strcmp(PNm,PAdd) ….

 

                                                       
1 STL is an acronym of Standard Template Library, a unique type of library which allows templatized library 

functions possible to be used by different types of collections of C++ objects.  
 
2 Namespace is an enclosure where functions and variables are defined in C++. The standard namespace or std 

is the most common namespace. 



5 

Prof. Bhushan Trivedi          Module 15 

The ! operator is needed here. The problem with this construct is that it is not a logical way 

to state that the strings are matching. It is hard for somebody who is new to C to 

understand what is happening in that statement. A novice has more probability to mistake 

that the check is made for string being dissimilar (rather than same). A better form is really 

desired. 

 

Let us repeat, there are many functions like strcmp and strcpy which manipulates the C type 

strings. They are known as C Type string functions. They are different than C++ string 

functions. They are the member functions of the string class which can be used by the C++ 

string objects. These C++ string functions allow manipulation of the string object in much 

more user-friendly and simpler fashion.   

 

Non-availability of assignment 
When we have two strings and we want to allocate the value of the first string to another, 

we cannot do it using normal assignment, unlike other variables. For example, look at the 

following (invalid) statement. 

 
Player1.PNm = Player2.PNm 

 

It is not a valid statement if both PNm is of C Type string. We need to use following 

construct for the same operation.  

 
strcpy(Player1.PNm,Player2.PNm) 

 

There is a possibility of incorrect assignment in the case of strcpy function. We may assign 

string X to string Y instead of assigning string Y to string X if we exchange the arguments by 

mistake. It is also not very readable.  

 

Initialization is not straightforward 
Another problem with C type strings is that it is not easy to initialize strings by other strings. 

For example, following statements are not acceptable in C type string case. Both are 

examples of initialization possible to be done for other types of variables. Initialization 

defines a new string with a value of an already defined string. Following statements are 

possible with string objects. 

 
string Player1.PNm (Player2.PNm) 

string Player1.PNm = Player2.PNm 

 

One may incorrectly compare above-mentioned statements being equivalent to following 

using the C type string but it is not. 

 
char *Player1.PNm = Player2.PNm 

 



6 

Prof. Bhushan Trivedi          Module 15 

Above statement initializes Player1.PNm pointer to Player2.PNm but do not define a new 

string. In other words, we still have the same string, pointed to by two different pointers. 

What we really need is to have a new string with the value of an old string. That is not 

possible in C Type string in the fashion that described above (initialization). We need to 

define both strings and copy one string into another separately. One can understand the 

difference in one more way. 

 

C strings are not possible to be initialized but it is not the case when objects are initialized 

with other objects. Though both objects contain the same value after initialization, changing 

one object does not change the other object. 

 

String functions are not member functions 
The strcpy and strcmp are not truly string functions. They are library functions which are 

used with arguments as strings. These functions are char array functions assuming a null 

character at the end. When that null character is not present in a char array, the function 

will not be able to work properly. For example, a function called strlen counts characters till 

the null character. It is possible that the array length is 100 but first 70 characters contain 

the string characters. The 71st character is the null character and thus the strlen correctly 

identify the length of the string as 70. The strcpy function is also written in the form that 

only characters till the null characters are copied in the resultant string. If strlen or strcpy 

functions are called with character arrays without having the null character, they cannot 

work as expected. 

 

Readability is compromised 
When the string is represented as character arrays, it works but not the same way as other 

built-in types. Using strings demands mastering different syntax and one must learn to deal 

with errors related to placement of null character and actual size of the string being one 

more than what is specified in the array definition (to accommodate the null character). If 

we have a solution which provides string operations like other data types, the users find it 

more readable and also user-friendly.   

 
C++ string objects are designed to address all these limitations and thus provide better and 

more readable ways to working with strings. Subsequent sections of this module deal with 

how C++ string objects are possible to be defined and used. We will also see how C++ 

objects overcome the limitations of C type strings. 

 

String Objects 
The string class, as we have mentioned already, is part of STL and thus provides a class 

string. The objects of this class, obviously, is known as string objects and are the constructs 

used to represent strings instead of C type strings (character arrays).  

 



7 

Prof. Bhushan Trivedi          Module 15 

The string class is defined in a manner that string objects work like natural strings. It 

contains many functions that a normal user expects from a string object. If you have looked 

at how we have defined and used the string objects in program 15.1, you can vouch for that 

yourself.  

 
If you look back the code that we have defined and used in previous modules, you can see 

that string objects are indeed user-friendly. We have defined and used string objects 

without specifying anything about them. We have treated strings as if they are normal data 

types. One does not really need a special introduction to strings to use them in the C++ 

program. Those examples showcase how user-friendly and natural these string objects are.  

 
Having mentioned that, it is important for us to understand that string class does not only 

provide user-friendly operations for creating and using strings like we have been doing so 

far but over and above, it also provide quite a few member functions to make it much more 

powerful than one can think of at the first glance. Let us delve deeper to see that.  

 

Defining strings 
One can define strings in a similar fashion as other types of user-defined and built-in 

variables in C++. There are three different ways possible in which one can define strings in 

C++, here are they. 

 

Normal way 
Examples that we have seen earlier are the normal way to define strings.  Here is another 
example 
 
 string PNm;

     string PAdd;

 
One just defines both variables as strings, that is all. We have seen quite a few examples of 

this type of definition so far. 

 

Initialization 
Initialization is another way to define a string. In this case, the strings are defined and given 

a value from some other C++ string object, a C type string object or a string constant. Here 

are examples. 

 
 string PNm (SomeOtherPNm); // using other string object

     string PNm = SomeOtherPNm; // same as above

 

 char *Address = “Some Address” 

 string PAdd(Address); // using C type string 

 

 string PNm (“Virat Kohli”); // using string constant

 string PNm = “Virat Kohli”; // same as above 

 



8 

Prof. Bhushan Trivedi          Module 15 

Using constructor 
All examples in above section invoke the constructor for string object. The designers have 

defined a few string constructors and they are called with appropriate arguments as and 

when the specific constructor is invoked. When a constructor is also defined for one 

argument, it is also possible to use as a conversion function.  

 

Substring related member functions 
Once we have seen how the strings are possible to be defined, there are some ways one can 

manipulate strings to get the substrings and use them in the program. There are two 

different ways one can manipulate STL objects including strings. The first method is using a 

member function, which is quite common across many other libraries. Second is to use 

generic algorithms. We will look at some of the member functions in this module. We will 

have a detailed look at the generic algorithms at a much later stage of this course when we 

study STL. However, we will give examples of using strings with member functions here to 

showcase how a programmer can put them to use. Before we discuss these functions, let us 

clearly understand one thing. Most of the functions that we show in the subsequent 

sections have other overloaded versions for different types and numbers of arguments. We 

are only showing the versions which are most commonly used. One should study the help 

file of the compiler that they use for learning about other versions.  

 

Finding a character or a substring 
The generic algorithm (a non-member function), find() is quite useful in many ways with 

many STL objects, so as strings. However, string also has a member function which is also 

called find(). The member function find() is used to find the location of a character or a 

substring in a given string. Find takes the string under consideration as the calling object and 

the substring or char as the first argument. It returns the position at which that character or 

substring resides in the given string. The first position of the string is numbered as zero like 

arrays. That means the humans who read the string and find the location of a typical 

character at position 10, the find function finds it at position 9.  

 

When the substring or the character provided as the argument is really a part of the 

invoking string object, the position where the argument is present in the invoking string is 

returned as mentioned above. However, if the character or the substring is not part of the 

string, a strange response is provided. The output will be the largest value a string position 

can obtain is returned (normally a very big number indicating the maximum size of the 

string object). Let us check following statements.  

string String1 = "Vishwanathan is a Chess Player";

unsigned long position = String1.find("Chess");

cout << "Position is " << position << "\n";

unsigned long Otherposition = String1.find('P');

cout << "Position is " << Otherposition << "\n"; 

 

output: - 

Position is 18 



9 

Prof. Bhushan Trivedi          Module 15 

Position is 24 

 

We have a string "Vishwanathan is a Chess Player" at our disposal and we tried to find out 

where the word Chess and character P exists in the string. The find function returns the 

position of the substring in the first case and the character in the second case as expected.  

 

When find () is supplied with a string or a character not present in the string 
Look at the following code as well as the output. Both, the substring and the character are 

not really present in the string.  

 
string String1 = "Chirag throw a ball";

string String2("Cat jumps over");

cout << String1.find("Nowhere") << endl; // substring not present 

cout << String1.find('B')<< endl;// char not present 

output: - 

18446744073709551615 

18446744073709551615 

 

The large value 18446744073709551615 is the maximum size of the string on the 

machine where this code snippet was running. 

 

Let us take a few more examples to illustrate few other important characteristics of the 

string object and the functions that are used with it. 

 

Using function at() 
A function at() takes an unsigned long integer value indicating the position and returns the 

character at that position. This functionality is exactly opposite to find. The find takes char 

and returns the position and the function at returns the character at a given position. In 

following code snippet, the value i is used to indicating the position in the string. The for 

loop starts with i value as 0 and went on till the length of the string and display the 

characters at ith position.  As we are looping through each position of the string, we get the 

complete string as an output of the loop.  
    
for (unsigned int i=0; i<String1.length(); i++)

        cout << String1.at(i);

    cout << endl;

    

Output: - 

Chirag throw a ball 

  

Using function insert () 
A function insert() takes two arguments, a position, and a substring. It adds the substring at 

a given position. Here is an example. 

 
String1.insert(14, " red ");

cout << String1<< endl; 

output: - 



10 

Prof. Bhushan Trivedi          Module 15 

Chirag throw a red ball 

 

Using function append () 
The function append () takes a substring as an argument and appends the substring to the 

string. Here is an example.  

 
String2.append(" the table!");

cout << String2 << endl; 

 

output: - 

Cat jumps over the table! 

    

Using function replace () 
The replace () function takes three arguments, position from where to start, number of 

characters from that position and the substring which replaces the part which is being 

replaced. Following example illustrates how one can replace a table with a chair in the 

string2  

 
    String2.replace(15,10, "the chair"); // table with chair

    cout << String2 << endl;

    

output: - 

Cat jumps over the chair 

 

Using function erase() 
The erase() function works like the replace function but replacing the content with nothing. 

It has two arguments, position to start with and the number of characters from that 

position. The function removes those characters from the string object. Here is an example 

where 10 characters from positon 15 are removed. 

 
    String2.erase(15,10); // now removing chair

    cout << String2 << endl; 

 

output: - 

Cat jumps over  

 

Dealing with multiple strings 
There are many cases where multiple strings are manipulated in the program. For example, 

when one string is compared with the other string or checking if one string is assigned to 

another string etc. The C++ string object contains many member functions which can be 

used for operations involving multiple strings. Let us try to see how those member functions 

can be used in a program. 

 

Using operators  

+ operator for concatenation  
The first operator function provided for string object is operator +() which allows a 

programmer to use + to concatenate two strings. Here is an example.  

 



11 

Prof. Bhushan Trivedi          Module 15 

string String1 = "Chirag throw a ball";

string String2("Cat jumps over"); 

string String3 = String1 + String2; 

cout << String3; 

 

output: - 

Chirag throw a ballCat jumps over 

 

= operator for assignment 
The = operator is possible to be used to assign one string object into another. Here is an 

example.  
string String1 = "Chirag throw a ball";

string String3; 

String3 = String1; 

cout << String3; 

output: - 

Chirag throw a ball 

== operator for comparison 
 

string String1 = "Chirag throw a ball";

string String3; 

String3 = String1; 

if (string3 == string1) cout << “both are equal”); 

output: - 

both are equal 

> operator for comparison 
We can use > to see if the LHS of the > is a string which is lexicographically greater than the 

string which is at the RHS of the operator. Here is an example.  
 

 cout << "\n as per lexicographically order";

    if (String1 > String2)

         cout << "string1 is greater than String2\n";

    else

        cout << "\nString1 is lesser than String2\n";

output: - 

as per lexicographically order string1 is greater than String2

 

!= operator for checking inequality 
Like == operator, the != operator is also possible to check if two items on either side of the 

operators are not equal. Here is an example.  
 
 if (String1 != String2)

        cout << "Both strings are not equal\n";

     

output: - 

Both strings are not equal 

[] operator for array-like behavior 
    

    for (unsigned int i=0; i< String1.length(); i++)

        cout << String1[i];

    cout << endl;

output: - 

Chirag throw a ball 



12 

Prof. Bhushan Trivedi          Module 15 

Using functions 
Now we will see a few functions which can help us deal with multiple strings.  
 

Function compare ()  
The C++ does not have the strcmp function for the string objects but a similar compare() 

function which provides similar functionality. Exactly like strcmp, it checks for all three 

cases, both strings being equal, first string being lexicographically (in the alphabetic order 

like the library) larger or the second string being larger. Compare function is called with 

another string as an argument. When it returns zero, both strings are equal, when it returns 

lesser value than 0, the first string is lexicographically smaller and when it returns greater 

value than 0, the first string is lexicographically larger than the second. Following code 

describes these three cases. 
 
 int val = String1.compare(String2); 

 if (val == 0)

            cout << "Both the strings are equal\n";

     else if (val > 0)

            cout << "Second String is lexicographically greater \n";

     else if (val < 0)

            cout << "Second String is lexicographically lesser \n"; 

output: - 

Second String is lexicographically greater 

 

Function swap () 
The function swap is also a useful function. It takes one string argument and swaps the 

calling string object value with the string object value of the argument.  

 
cout << "Strings before swapping \n"; 

cout <<"First string is " << String1 << endl;

cout <<"Second string is " << String2 << endl; 

String1.swap(String2); // String2.swap(String1) will have same effect

     

cout << "Strings after swapping \n"; 

cout <<"First string is " << String1 << endl;

cout <<"Second string is " << String2 << endl; 

 

output: - 

Strings before swapping  

First string is Vishwanathan is a Chess Player 

Second string is England Won the worldcup 

Strings after swapping  

First string is England Won the worldcup 

Second string is Vishwanathan is a Chess Player 



13 

Prof. Bhushan Trivedi          Module 15 

Yielding Characteristics of the string 
In this section, we will be dealing with a few functions which help us deal with the 

characteristics of the string object. We will look at four functions which are used the most. 

 

Function empty () 
If we want to see if the string is empty, this function is handy. This function does not take 

any argument and returns a bool value which is true if the string is empty. Otherwise, it 

returns false. 

 

Function size() and max_size () 
The function size returns the size of the string. Another function length() can also be used 

for the same. The function max_size() returns maximum size of the string for a given 

compiler under a given machine. Here is an example. 

 
 cout << "\nCurrently the size of the string is " << tString.size();

cout << "\nCurrently the string is empty: "<< tString.empty(); 

 cout << "\nThe maximum size of string is " << tString.max_size(); 

 

output: -  

Currently, the size of the string is 30 

Currently, the string is empty: false 

The maximum size of string is 18446744073709551599 

Function resize () 
The function resize contains a single argument, it resizes the string with the supplied 

argument size.  

 
 void Resize(string tString, int NewSize)

{

    cout << "The original string is :"<< tString << endl;

    cout << "Original size of the string is : " << tString.size()<< endl; 

    tString.resize(NewSize); 

    cout << "Now the string size is : " << tString.size()<< endl;

    cout << "The resized string is :"<< tString << endl;

} 

Resize (String1, 100);

Resize (String2,10); 

 

The original string is: England Won the worldcup 

Original size of the string is: 24 

Now the string size is: 100 

The resized string is: England Won the worldcup 

The original string is: Vishwanathan is a Chess Player 

Original size of the string is: 30 

Now the string size is: 10 

The resized string is: Vishwanath 

 

Summary 
We have seen how arrays can be defined and used with objects as members at the 

beginning of this module. We have learned to define and use string objects after that. We 



14 

Prof. Bhushan Trivedi          Module 15 

have seen through numerous examples how string objects work in accordance with the idea 

of providing user-defined types to work as close to built-in types as possible. We have seen 

operators as well as a few member functions of the string class.  



1 

 

ePG Pathshala 

Subject: Information Technology 

Paper: Numerical Methods 

Module  1 :  Introduction to Numerical Methods and Errors 

 

 

1. Introduction: 
 
The first step in solving many problems in in Science, engineering, business, 

economics, biomedicines etc. is to build a mathematical model. This mathematical 

model is built using several principles and laws of science and engineering.  

Implementation of this mathematical model leads to formulation of mathematical 

problems to be solved. The mathematical problems arrived at could be one of the 

following types, but not limited to only these. Let us have a glimpse at these problems 

one by one. Our modules in this paper are based on studying numerical methods to 

solve these problems. 

 

2. Overview of different problems  discussed in this paper of  numerical methods: 

2.1. Roots of an equation f(x) = 0 

One comes across the problem of finding roots of an equation f(x) = 0. In modules 3 to 

9, we would be learning different methods for the same, namely, Bisection method, 

method of False Position, Secant Method, Successive Approximation method, Newton 

Raphson method and special techniques to find roots of a polynomial as they deserve 

special attention 

 

 

 

 



2 

 

2.2. Interpolation  

It turns out that due to many reasons (to be discussed in detail in module 10), function 

values are available at discrete points and function value is required at an argument, 

for which the function value is unknown. One of the ways to estimate function value is 

through interpolation. Interpolation is discussed in modules 10-16 and inverse 

interpolation in module 17. 

 

 

 

 

 

 

 

 

 

2.3. Least Square Curve fitting  

Many times function (values available at discrete points) is to be modeled by a curve 

whose algebraic equation is known and parameters of the curve are determined by 

method, known as  least square curve fitting. Least square curve approximation and 

other approximation methods are discussed in modules 18-20. The simplest least 

square curve fitting is when the curve being fitted is a straight line. 

 

 

 

 

 

 
 
 
 
 
  



3 

 

 
2.4. Numerical Differentiation 

In several cases, one looks for the value of derivative of function at a point.  The 

process of estimating derivative of a function at a point, be it tabular or non-tabular is 

called numerical differentiation. Numerical differentiation is covered in module 21. 

 

 
 

2.5. Numerical Integration 

As derivative is to be estimated, similarly, integral of function is required to be 

estimated over an interval, with the help of function values at the discrete set of 

points. (Integrand expression may be available or not available) Numerical Integration 

methods come to our rescue. Numerical Integration methods are elaborated in 

modules 22-26 

 
 



4 

 

 
 
 

 
 

2.6. Solution of Simultaneous Equations 

You are quite familiar with simultaneous linear equations and have solved them in 

school days using elimination techniques. In real life situations, one faces 

simultaneous linear as well nonlinear equations in large number of variables to be 

solved, which is tedious using analytical methods. Solution of simultaneous 

equations, determination of eigen values and eigen vectors of matrices (matrices are 

associated with coefficients occurring in equations) has been presented in modules 

27-32 

 



5 

 

 

 

2.7. Solution of Differential Equations 

Many scientific and other problems on mathematical modeling give rise to differential 

equations, whose solution is to be determined. Methods for finding numerical 

solutions are discussed in modules 33-35.    

 

 
 

 

3. Why numerical methods? 

Many times analytical methods to solve a given problem may not exist at all (not 

known so far), or are too laborious and complex to apply.  In many situations, 

information (Data) available does not admit applicability of direct analytic methods. 

Like, if function is not known and only values are available at discrete arguments, 

analytical methods are of no use. Finally, analytic methods exist but are quite time 

consuming due to huge data/complex functions involved. As a result, numerical 

methods are of great rescue and results are obtainable to the desired accuracy in 

many situations. 



6 

 

 

4. How are numerical methods different from analytical methods? 

Let us understand some characteristics of Numerical Methods. Numerical methods are 

applicable to numerical problems, that is, the problem to be solved by any numerical 

method has no scope of containing arbitrary parameters. Solution cannot be 

determined in terms of parameters. For example, no numerical method would be 

applicable for finding root of a quadratic equation             as the equation 

contains parameters a, b, c .  Nevertheless, any equation with known coefficients, for 

example,             would be solvable by an appropriate numerical method. 

In short, numerical answer to a numerical problem is obtained under numerical 

method. If the same type of problem with different data set is to be solved, the entire 

method is to be reapplied. Numerical methods act like algorithms and given problem 

acts like data set.  It is likely, that there would be many methods to solve a given type 

of problem, all justified by mathematical analytical theory and to select the most 

suitable method for the occasion requires considerable skill.  

 

Secondly, analytical methods boast of giving exact answer whereas numerical 

methods can only ensure approximate answer. But, in many of numerical methods, 

good approximate answer to desired accuracy can be obtained. Also, the 

computations are fast, many of the methods being iterative in nature are the best 

candidate to be implemented on computer. One can expect the answer to complex 

problem within time limit. Some methods are direct methods also. The following 

diagram gives basic nature of iterative processes applied in numerical methods. 



7 

 

 

 

5. Quantification of Errors 

Before the problem arrives to a numerical analyst, it undergoes different stages and 

errors may creep in.  Also during computations, errors arise due to several reasons.  

Different sources of errors and types of error are discussed in our next module 2. Here 

we shall learn different measures of error. Before that, we also need to understand 

the difference between accuracy and precision.    

 

Accuracy is a measure of how close the estimated answer of the problem is to true 

solution, the closer the answer to true value, more accurate it is. Precision is, how 

closely values agree to each other.  



8 

 

 

 

 

 

 

5.1. True Error  

True error is defined as difference of true value (exact answer) and approximate 

answer. Thus, True Error:     = True Value – Approximate Value.  For example, 

suppose, true value of a quantity = 7.893 and   approximate value = 7.672 then  

  = True Value – Approximate Value 

     = 7.893 – 7.672 

      = 0.321 

Note that, True error can be positive or negative.  

If true value = 7.893 as above, but approximate value = 7.975, then  

                              = 7.893 – 7.975 = – 0.082 

 



9 

 

5.2. Absoluter (true) Error  

Usually one is interested in the magnitude of error. One is interested in, “How much is 

the error?” So, we have, Absolute (true) error given by  

Absolute (true) error:    |= |True Value – Approximate Value| 

 

5.3. Relative Error 

Absolute error may not be desirable in each and every case, as it is measure of 

amount of error and does not take into account of order of value. It needs to be 

normalized. This leads to definition of Relative Error as 

Relative Error     =    
  

          
 

       =       
                             

          
  

 

5.4. Percentage Error 

Multiplication of relative error by 100 gives % error denoted by    

   = 
                             

          
       

And therefore, absolute relative error and absolute % error are given by 

|
                             

          
|  and      |  | =|

          

          
|       ; respectively.  

 

Illustration 1: 

Let true value be 20 meters, absolute true error = 1 cm (approximate value is 20.01 

meters) 

          |Relative error| =   |
                             

          
| 

                          = |
 

    
| 

                         = 0.0005 = 0.05% 

Whereas, if true value = 1 cm and absolute true error = 1 cm (approximate value 2 

cm) then 

         |Relative error| = |
                             

          
| 

                    = |
 

 
| 

                   = 1 = 100% 



10 

 

 

5.5. Approximate errors 

While solving numerical problems, (class room discussion for explaining is different) , 

usually true solution would be  known in only limited cases,  like while testing an 

application/software/ program’s performance , program would be tested through test 

cases as input .  If exact answer of a problem is known, why would one apply 

numerical method for the same?  So, for all practical reasons, true answer is not 

known. Thus measures of errors need to be modified.  Methods being iterative in 

nature, what can be better than current estimate as a substitute for true value and 

previous estimate as approximate value. As a result, Absolute approximate error is 

given by  

|Approximate error| = |Current estimate – Previous estimate|; and 

      Approximate relative error = |
                 

                
| 

Approximate % relative error = |
                 

                
|       ,   denoted as |  | 

 

Illustration 2:  

Following is the table of iterations being performed for finding roots of an equation 

f(x) = 0 by Bisection method (Module 3). The column containing ck’s are successive 

estimates for the root. Let us calculate approximate % error in some iterations. 

 

Iteration 

No. 
a f(a) b f(b) C

k
 f(c

k
) 

0 0 -1 1 1 0.5 -0.375 

1 0.5 -0.375 1 0.17188 0.75 0.1719 

2 0.5 -0.375 0.75 0.17188 0.625 -0.1309 

3 0.625 -0.1309 0.75 0.01245 0.6875 0.0125 

4 0.625 -0.1309 0.6875 0.01245 0.65625 -0.0611 

5 0.65625 -0.0611 0.6875 0.01245 0.67188 -0.0248 

6 0.67188 -0.0248 0.6875 0.01245 0.67969 -0.0063 

7 0.67969 -0.0063 0.6875 0.01245 0.6836 0.0031 



11 

 

Iteration 

No. 
a f(a) b f(b) C

k
 f(c

k
) 

8 0.67969 -0.0063 0.6836 0.00305 0.68165 -0.0016 

9 0.68165 -0.0016 0.6836 0.00305 0.68263 0.0007 

10 0.68165 -0.0016 0.68263 0.00072 0.68214 -0.0005 

11 0.68214 -0.0005 0.68263 0.00072 0.68239 0.0001 

12 0.68214 -0.0005 0.68239 0.00015 0.68227 -0.0001 

13 0.68227 -0.0001 0.68239 0.00015 0.68233 0 

 

Iteration - I 

    
         

    
          

Iteration - II 

         
           

     
          

Iteration – last but one 

       
                

       
               

Iteration – last 

  
                

       
               

 

5.6. Stopping Criterion 

There are many stopping criterions (achieved the desired accuracy, satisfied with the 

answer obtained). Two of them are:  

(a)   Absolute approximate error < Pre assigned tolerance say    , where   > 0 

(b)   Absolute Relative Error <   

If one is interested in obtaining answer correct to certain number of significant digits 

say    then  

      
 

 
         

 

********************************************************************** 



 

 

 

 
 

Role Name Affiliation 

Principal Investigator Dr. Savita Gandhi Professor, Dept. of Computer Science, 

Gujarat University, Ahmedabad 

Content Writer Mr. Hardik Joshi Asst. Professor, Dept. of Computer Science, 

Gujarat University, Ahmedabad 

Content Reviewer Dr. Hiren Joshi Professor, Dept. of Computer Science, 

Gujarat University, Ahmedabad 

 

Item  Description 

Subject Name Information Technology 

Paper Name Open Source Software 

Module No 4 

Module Name GNU/Linux Structure & Installation 
Pre-requisite Knowledge of Computing 

Objectives To be able to install and operate the Linux OS using GUI 

Keywords Disk partition, boot, installation, centos, ubuntu, virtualization 

 

GNU/Linux Structure & Installation 

 

Finalizing the Linux Distribution 

As we have seen in the previous module that Linux OS comes in various distributions. Before 

finalizing the installation of Linux, we must select the best distribution that fits our need. Our 

technical expertise and necessity will help in finalizing a particular Linux distribution. As 

such, Linux does not have different OS for server or for desktop systems, however, in server 

based distributions the GUI may not be included. There are various criteria to finalize an 

appropriate distribution for Linux. The following indicators can help us to select a proper 

distribution: 

• What type of hardware is available ? (X86, ARM, PPC etc.) 

• What will be the main function of the system (Server or Desktop)  

• What type of packages will be installed? 

• How much hard disk space is available? 

• How long is the support cycle for each release? 

• How often are packages updated? 

• Is it for experimental use or long term stable system? 

• Is there any need of customizable kernel from the vendor? 



 

 

Linux can be classified on various criteria, the following diagram classifies based on the use 

(whether personal or network based). There are nearly 1000+ flavours of Linux as of now, 

most of them are suitable for Server OS or for Desktop OS. A curious user may surf internet 

and try to find out the distribution that is mostly used by others. We must select the 

distribution such that proper help is available through nearby communities. 

 

Figure 1: Linux Distributions 

Installation of Linux for personal use can be non-commercial solution like Ubuntu, Fedora, 

OpenSuse, CentOS etc., however, if we want to install for organization, it is beneficial to get 

a commercial product. The following Linux distributions can be installed for academia: 

• CentOS ( https://www.centos.org/download/ ) – Good for Network Administrators 

• BOSS ( http://www.bosslinux.in/ ) – Indian Linux  

• Trisquel ( http://trisquel.info/en/download ) - Complies to free software 

• Ubuntu ( http://www.ubuntu.com/download/desktop ) - Adopted by many schools 

Modes of Installation 

Depending on the availability of the system, its hardware configuration and installed 

software, we may select either of the modes of installation that are listed below: 

• Bare Metal Installation 

• Dual boot with other OS 

• Using Live Media like Live CD/DVD/USB 

• Using a host machine hypervisor program (eg. VMWare, Virtual Box, Hyper-V etc.) 

Choosing a Linux Distro

Server

OpenSUSE

CentOS/RHEL

Ubuntu Server

Desktop

Fedora

Ubuntu 
Desktop

Embedded

Android

Tizen

https://www.centos.org/download/
http://www.bosslinux.in/
http://trisquel.info/en/download
http://www.ubuntu.com/download/desktop


 

 

A computer system with no OS installed in it is generally called bare metal. Installing Linux 

on bare metal is completely risk free as there is no thread of losing any data. However, we 

have to check the hardware configuration and decide whether the hardware present in our 

system supports the distribution that we are planning to install.  In case, if there already exists 

and OS on the computer, we can plan of installing Linux as dual boot provided there is an 

empty partition in the hard disk. We must ponder on the following points before installing 

Linux as dual boot system: 

• Is there sufficient hard disk space so that two or more OS can reside on a Single hard 

disk 

• Is there any OS that already exists (eg. Windows) 

• Separate partition must exist or needs to be re-partitioned 

• Risk of losing previously installed OS or data 

There are chances of modifying the boot sector while installing Linux as dual boot system. 

The prior OS may not be visible if any mistake is made during the installation process.  

Since few years, Linux distributions are also available such that there is not need to install 

Linux on hard disk. We can use Linux directly from the USB drive or CD/DVD. Such kind of 

Linux are known as live media, the CD/DVD or USB can be bootable. As the media is 

bootable, we must ensure that the system boots from media and not from the hard disk.  

Using Linux from live media is surely fun as it does not require any installation, there is also 

no risk of losing data residing on the hard disk, however while using live media, the 

following issues may arise: 

 System performance may degrade (as data transfer rate is less) 

 Persevering the files from live media to hard disk can become trickier 

Since past few years, good hardware is available at cheaper costs. So, if we have a good 

hardware with more RAM and efficient processor, we can think of using virtualization 

software to install Linux.  

Installing Linux using hypervisors 

With the development of virtualization technologies, installation of Linux has become very 

easy. There is no risk of losing any data when Linux is installed as a virtual machine. 

However, if the hardware is not efficient, the system performance may degrade while using 

hypervisors. Let us understand how virtualization is done. If there exists some OS on the 

hardware, we can install virtualization software like VirtualBox, VMWare, Hyper-V within 

the existing OS. Let us take a scenario, suppose Windows is existing in our system. It is is a 

licensed version, we may not remove Windows. Under such circumstances, we download the 

virtualization software and install Linux within the software. After the installation gets over, 

we will be running two OS concurrently, windows as a host OS and Linux as a guest OS. 

Such kind of installation will require nearly 10 GB of hard disk space of Windows. The 

Linux installation will reside as a file in hard disk. Figure 2 illustrates the virtualization 

technique. The hypervisor or virtualization software fits in between the Host OS and the 

Guest OS.  



 

 

 

Figure 2: Virtualization 

Modern computer hardware contains virtualization functionality. While using virtualization technique, 

we must remember to enable the virtualization flags of CPU from the BIOS. Latest version of 

Windows comes with Hyper-V as a feature, in such case there is no need to install any virtualization 

software but we can start using Hyper-V. Oracle VirtualBox is a free virtualization software that can 

be downloaded if Hyper-V is not present in the system. Let us see the steps used to install Linux with 

the help of virtualization. 

Installation of Linux 

Before we begin with the installation, we must have Linux in .iso format. Linux iso file can be kept in 

USB drive or on hard disk partition. There is no need for a separate hard disk partition, however, the 

hard disk must have atleast 10-12 GB of free space if we are planning entire Linux installation. Now, 

let us see step-by-step screens of installing Linux. The virtualization software demonstrated here is 

Oracle Virtual Box. The following things need to be taken care of: 

 Hard disk must have enough space for installation 

 CPU Virtualization must be enabled from BIOS 

 We have downloaded proper ISO file  

 The ISO file (64 bits) and our hardware (64 bits) must match 

 Internet connection is desirable but not necessary 

Computer Hardware

Virtualization Software (Virtual Box, VMWare, Hyper-V)

Host Operating System (Installed Previosuly)

Applications Running in Linux / Other OS

Linux Other OS



 

 

 

Figure 3: Step-1 (Start Virtual BOX Manager) 

 

Figure 4: Step-2 (Create a Virtual Machine and provide Name to the OS) 

 

 

 
Figure 5: Step-3 (Assign RAM) 

 
Figure 6: Step-4 (Assign Hard disk space ) 

 



 

 

 
Figure 7: Step-5 (Select Hard disk type) 

 

 
Figure 8: Step-6 (Assign Storage type) 

 

 

Figure 9: Step-7 (Start the machine) 

 

Figure 10: Step-8 (Select the location of ISO File) 



 

 

 

Figure 11: Step-9 (Installation will being) 

During the installation process, we will be asked to supply root password, create users, configure the 

country/time zone, configure languages, select the software to be installed. It is recommended that the 

root password must be remembered since root user is the administrator account(super user account). It 

is also recommended to select software/packages before installing to avoid post installation hassles of 

installation of individual software through internet.  

Linux Boot Process & Partitions 

In this section, we will understand the booting process and certain terminology associated with the 

filesystem. During the installation, we can create partitions and can configure the directories as per the 

requirement of the organization. For instance, if the organization needs to create 100 users, we must 

assign more disk space to /HOME directory. 

Particulars Windows Linux 

Partition Disk1 /dev/sda1 

FileSystem type  FAT32/NTFS EXT3/EXT4/XFS… 

Base Folder where the OS 

is installed  

“C drive”  “/” root 

Mounting Parameters Drive Letter  MountPoint  

The filesystem of Linux is entirely different from Windows. In Windows, we have C:, D: and so on as 

hard disk partitions whereas in Linux the partitions can be /boot, /bin, etc. So, in Linux we identify the 

mount point as ‘/’ (root).  

 



 

 

Linux Boot Process 

When Linux is successfully installed, we can restart the system. As soon as the system gets restarted, 

the hardware initializes and gradually the OS will start. The following steps are performed during the 

booting of Linux: 

1. BIOS initializes 

2. POST routine executes 

3. Boot Loader from MBR is invoked  

4. Boot Loader gives a choice of OS to start 

5. Boot Loader loads the Linux Kernel 

6. Boot Loader loads the initramfs (RAM based 

file system) 

Once the Linux starts, it will display the login screen. We can login to the system and explore GUI 

provided with Linux. It is desirable to login as some other account and not as root. Since root login 

has higher privileges and there is a risk of making mistakes with the root login. 

 

Let us summarize the key concepts covered in this module 

• Various parameters are used to finalize on a specific Linux Distribution.  

• Installation of Linux can be done using different methods, however, the available hardware 

becomes the key deciding factor. 

• Linux can be installed on a partition of hard disk or can be executed from live media or from 

hypervisor program. 

• Hypervisor programs like VirtualBox are the easiest way to learn Linux without taking any 

risk. 

 

 

 

 



 

Subject    :    Information Technology 
Paper      :    Object Oriented Concepts & Programming 
Module   :    Introduction to C++ Programing 
 

Programming Language History 
Programming is a process of writing solution to a problem in a computer language so that it can 

be executed by computer. 

With increasing level of complexities of applications the methodology of programming  have 

changed. Initially after the invention of computers the first programming method was- machine 

level programming. With few hundreds lines of code this approach worked well but as the 

complexity of programs increased a new language – Assembly Language was invented which 

uses symbolic representation of machine instructions. It was comparatively easy to write and 

maintain the code using assembly language.   As the program size and complexity kept on 

increasing, higher level languages were introduced such as FORTAN, C , BASIC , COBOL . A 

higher level  language is one which is closer to human language and thus further from machine 

language. 

C language is general purpose , fast and widely used language. It is well suited for system level 

application as the code written in C runs faster. 

But it is not suitable for large software development as the complexity increases and software 

become hard to maintain.  

There was another language -  Simula  which had the object oriented features helpful in large 

software development but was not very efficient in term of time. C++ was inspired by both these 

languages, thus it contain the object oriented features as well as the efficiency of C . 

 

C++ was created by Bjarne Stroustrup . Its development began in 1979 at Bell laboratories in 

New Jersey . The language was initially known as “C with classes” . In 1983 the name was 

changed to C++ , as  the language was more than classes .  C++ was extension to C language 

and has the backward compatibility with C. 

There are so many programming languages available but C and C++ are one of the most widely 

used language in software industry. They are used for creating everything from Operating 

System to embedded systems, games, desktop application and so on. 

C++ provides support for both procedural programming as well as object oriented programming. 

Let’s understand the difference between Procedure Oriented and Object Oriented programming 

paradigms. 

 



  Module 1  - Introduction to C++ Programing 

Dr. Jyoti Pareek                                                              2                            Object Oriented Concepts & Programming 

Procedure Oriented Approach vs Object Oriented 

Approach 
 

There are different approaches to build a solution to a specific problem known as Programming 

Paradigms. Procedure Oriented and Object Oriented are two major paradigms. 

 

The conventional approach (ex. FORTAN, COBOL and C) for solving a problem is Procedure 

Oriented Programming . 

 

In Procedure Oriented Programming the focus is on Procedures also known as Function or 

Routines. It gives the step by step approach to solve the problem .It is also known as top down 

approach – a big problem is broken into smaller segments (functions) 

 

 

Main Program 

 

 

function 1           function 2        function 3 

 

 

This approach is  intuitive as  we give a step by step solution to a problem. 

 

Procedure Oriented relies on Procedures and Data which are two separate concepts. Data move 

freely around these procedures thus there is no data security constraint. There is no control over 

the way the data is processed or modified.  In Object Oriented approach these two concepts are 

bundled in to a single concept of Entity (object). 

 

In Object Oriented every problem is perceived in terms of collection of Entities / Objects. Every 

Entity encapsulates the data and behavior in a single unit called Class. Here the data can be 

processed only in the way that has been defined by the class, this makes the application more 

maintainable.   

 

Object oriented approach gives the power that the data can be hidden and cannot be accessed by 

outside world directly. Entities communicate with each other with the help of functions. 

 

 

Entity A     Entity B 

 

 

 

 

 

 

    

 

  
Data 

Fucntios

ns 

Data 

Fucntios

ns 

communication 



  Module 1  - Introduction to C++ Programing 

Dr. Jyoti Pareek                                                              3                            Object Oriented Concepts & Programming 

Let’s understand this with an example of an application for maintaining Students record.   In 

Procedure Oriented programming the approach would be to break the system in smaller modules. 

We will think of the operation which needs to be performed in this application such as- 

Read student’s data, display student’s data , calculate the grade of a given student, calculate the 

percentage of a given student , generate a mark sheet of a given student. 

 

These are some of the task which is required in the application. Now the second part is to decide 

what data are required for the application? Here the data would be required to store student detail  

thus we need to define a structure –Student  having the attributes like – name , roll number, 

course , marks etc. 

 

Let’s see the complete set of data and fucntions 

 

struct Student 

{ 

    char name[50]; 

    int roll; 

    char course[50]; 

    int sem; 

    float marks[6]; 

}; 

 

Struct Student readStudent(); 

void displayStudent (struct Student s); 

char calculateGrade(struct Student s); 

float calculatePercentage(struct Student s); 

void generateMarksheet(struct Student s); 

 

Here the data part i.e. structure Student and the functions which operate on this Student structure 

are written separately. Student data is moving freely among these function therefore no data 

security is there. 

 

Let’s see the same application design using Object Oriented programing approach. In Object 

Oriented approach we first find out the entities (objects) which take part into this application. 

Here the main entity is - Student 

(In actual System there can be more entities) 

 

After identifying the entities now we need to find the attribute and behavior of these entities. 

The Student entity can have the following attributes: 

 Student id, name, course, semester, marks etc. 

And the behavior – 

readStudent() 

displayStudent() 

calculateGrade() 

calculatePercentage() 

generateMarksheet() 

 



  Module 1  - Introduction to C++ Programing 

Dr. Jyoti Pareek                                                              4                            Object Oriented Concepts & Programming 

 In Object Oriented these attributes and behavior are combined into a single unit – Class. 

 

class Student 

{ 

private: 

    char name[50]; 

    int roll; 

    char course[50]; 

    int sem; 

    float marks[6]; 

 

public: 

 

void readStudent(); 

void displayStudent (); 

char calculateGrade(); 

float calculatePercentage(); 

void generateMarksheet(); 

} ; 

 

Here the data part is kept private which means no outside function can directly access the 

attribute of this class.  

 

Object Oriented Programming Concepts 
 

Classes and Objects  

A Class is a user defined data type and an Object is a variable of this Class. 

 For example suppose we want to store details of Book. There is no data type available for 

storing the details of book. We can define a C structure for this but a C structure defines only the 

attributes of an entity and not the behavior. So the functions which operate on this Book entity 

has to be defined separately .  

Object Oriented approach allows us to create more powerful data type- Class, which gives more 

control over the data  type. A class is an extension to C structure. The difference is that structure 

in C contains only attributes but a Class can contains attribute along with the behavior of the 

entity. 

The class defines the blueprint of a real world entity. An Object is an instance of a class. If we 

need a real world entity then we need to instantiate object of a class. 

Here is an example of a Time class: 

 

 



  Module 1  - Introduction to C++ Programing 

Dr. Jyoti Pareek                                                              5                            Object Oriented Concepts & Programming 

Example: 

class Time 

{  

private: 

 int second; 

 int minute; 

 int hour; 

 

public:  

 

 void displayTime(); 

 void readTime(); 

 Time addTime(Time t); 

 Time subtractTime(Time t ); 

   

}; 

 

Here the class contain the attributes of Time i.e. hours, minutes and seconds along with the 

methods to read time, display time, add two time entity and subtract time entity. 

We will see in the coming lectures that C++ class data type is as powerful as the standard data 

types. 

Encapsulation and Data Hiding: 
Encapsulation refers to combining both data and function that manipulate the data together. In 

C++ encapsulation is achieved by Class. As we have seen that a Class in C++ contains both data 

and functions which operate on data. This makes the data highly secured from direct access. In 

the above Time example the attribute of Time entity and the methods are encapsulated in the 

single Time class. 

Encapsulation led to another important Object Oriented programming concept Data Hiding 

where a programmer can decide what part of the class should be visible (public ) and what must 

be hidden(private/protected) from outside world. 

In the Time class example the properties of class are kept “private” , which means these 

properties are  available only to the functions of this class but hidden from outside world. 

The advantage of this concept is that the data is safe; programmer cannot access the data directly. 

A non-member function cannot access an object’s private or protected data. (An exception to this 

is friend function which is covered in coming module) 

Abstraction 
The idea of abstraction is to have a higher level look at the task. 

Data Abstraction allows us to create our own data type (using class), where we can define the 

variables and operations on this new data type. (Known as Abstract Data Type) 

Properties  

Methods  



  Module 1  - Introduction to C++ Programing 

Dr. Jyoti Pareek                                                              6                            Object Oriented Concepts & Programming 

With data abstraction we can focus on what operation needs to be performed on the data without 

bothering about how these operations are implemented.   

In the above Time Class example, if we want to find the difference of two Time objects then we 

just need to instantiate the Time objects and invoke the method subtractTime(Time t), but we 

don’t need to think how this difference is found .  

Abstraction is an excellent tool for managing complexity. Well designed abstraction can make 

complex and large size problem  simpler and manageable. 

Reusability: 
Reusability refers to reusing the existing class.  In C++ once a Class is defined, it can be reused 

in any application. for example once we define a Time Class as given in the example above, in 

any application if we need a Time object then we just need to instantiate this class. 

C++ strongly supports reusability through Inheritance and STL (Standard Template Library). 

Inheritances allow a class to reuse data and methods of an existing class. STL contain built-in 

classes which can be used in any C++ application. STL contains the general purpose classes such 

as Stack, Vector, Queue etc.   

Inheritance:  
Real world objects do not exists in isolation. The basic idea of inheritance is defining a new 

object in terms of an existing object.  The advantage of this feature is – code reusability and 

hierarchical relationship  

For example if we define a Person class which contains the basic characteristics of a Person such 

as – name, dob , address  etc. and methods such as   readData() , DisplayData(), calculateAge() 

etc.  Now if we want to define a Student class then either we can create a completely new class 

Student from scratch or we can use existing Person class and add the specific characteristics of 

Student.  

Thus inheritance imposes a hierarchical relationship where a child class inherits data as well as 

behavior (methods) from its parent class. 

C++ strongly supports reusability through Inheritance and STL (Standard Template Library). 

Inheritance allow a class to reuse data and methods of an existing class. STL contain built-in 

classes which can be used in any C++ application . STL contains the general purpose classes 

such as Stack, Vector , Queue etc.   

Polymorphism   : 
The meaning of polymorphism in general terms is – one name multiple forms. One function call 

may results into different behavior in different instances. Polymorphism helps in making user 

defined data type more powerful. We will discuss Polymorphism in successive lectures. 



  Module 1  - Introduction to C++ Programing 

Dr. Jyoti Pareek                                                              7                            Object Oriented Concepts & Programming 

 

Summary: 
 C++ is an extension of C language and has the backward compatibility with C. 

 C++ model is not pure object oriented model. It gives power of both Procedure Oriented 

and Object Oriented Programming 

 C++ Classes allows us to create more powerful data type. 

 Elements of  object oriented paradigm  such as Encapsulation, Data hiding, Abstraction, 

Inheritance, Polymorphism etc. makes the language  suitable for large software 

development. 

 

 


