
3. (i) Discuss the temperature dependence of magnetic susceptibility of dia, para and ferro-magnetic materials.
(ii) Consider two coaxial long solenoids each of length l. The outer one has an area of cross-section A_{1} and number of turns per length n_{1}. Similarly, for the inner solenoid of area of cross-section A_{2} and number of turns per length n_{2}. L_{1} and L_{2} are the self inductances of two solenoids and their mutual inductance is M. Hence show that $M<\sqrt{L_{1} L_{2}}$.
4. (i) Deduce Coulomb's law from Gauss theorem in electrostatics.
(ii) Calculate Coulombs forces between two alpha particles $\left({ }_{2} \mathrm{He}^{4}\right)$ separated by a distance of $3.2 \times 10^{-15} \mathrm{~m}$ in air.
5. (i) Define electric susceptibility and permittivity.
(ii) Two point charges of magnitude $+q$ are situated at $(a, a, 0)$ and $(a, 0,0)$ respectively. Calculate the dipole moment of the charge distribution.
6. (i) Find out the steady current density that can give the magnetic field as $\vec{B}=k(\hat{i} y-\hat{j} x)$, where k is constant.
(ii) If \vec{B} is uniform, show that $\vec{A}=-\frac{1}{2} \vec{r} \times \vec{B}$. Where \vec{A} is the magnetic vector potential.

Group - B

Answer any two of the following:
7. (i) Show that a vector field $\frac{\hat{r}}{r^{2}}$ is both solenoidal as well as conservative.
(ii) Calculate the electric field due to an uniformly charged spherical shell. Plot the variation of field with radius.
8. (i) A solenoid of 1 m long and radius 4 cm has 1000 turns and carrying a current of 1 Amp . Find the magnetic field at the center.
(ii) State and express Faraday's law of electromagnetic induction. Hence find its differential form.
9. (i) Find the dimension of the quantity $\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$.
（ii）The intensity of sunlight reaching the earth＇s surface is about $1300 \mathrm{Wm}^{-2}$ ． Calculate the r．m．s．value of electric and magnetic fields of the incoming sunlight．

10．（i）State and explain Biot－Savart law．
（ii）Calculate the magnetic field at an axial point of a circular current carrying coil of radius a ．
（iii）Show that a uniform magnetic field can be produced by the use of a pair of such coils．

বঙ্গানুবাদ

Group－A

নিম্নলিখিত প্রশ্নগুলির মধ্যে যে কোনো চারটি প্রশ্নের উত্তর দাও：

$$
৫ \times 8=20
$$

১।（i）থ্রদত্ত ভেক্টর দুটি দ্বারা গঠিত তরের ওপর একটি ভেক্টর নির্ণয় করো যেখানে $\vec{A}=3 \hat{i}-2 \hat{j}+4 \hat{k}$ এবং $\vec{B}=\hat{i}+\hat{j}-2 \hat{k}$ ।
（ii）$\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ रলে，$\vec{\nabla} \cdot \vec{r}-এ র$ মান निণয় করো।
২।（i）পয়েন্টিং ভেক্টর কি？
（ii）$\vec{\nabla} \cdot \vec{B}=0$ সমীকরণ－এর তাৎপর্য কি？
（iii）তড়িৎমুম্বকীয় আবেশের ক্ষেত্রে লেঞ্জের সূত্রটি বিবৃত করো।
১+২+২

৩।（i）তিরশচৌন্বক，পরাচৌন্বক এবং অয়শচৌন্বক পদার্থের তাপমাত্রার সাথে চোম্বক গ্রহীতার প্রভাব উল্লেখ করো।
（ii）ধরা যাক এক অক্ষীয় দুটি লম্বা সলিনয়েডের প্রতিটির দৈর্ঘ্য $l ।$ বাইরের সলিনয়েডের প্রস্থচ্ছেদের ক্ষেত্রফল A_{1} এবং প্রতি একক দৈর্ঘ্যে পাক সংখ্যা n_{1} । ভিতরের সলিনয়েডের প্রস্থচ্ছেদের ক্ষেত্রফল A_{2} এবং প্রতি একক দৈর্ঘ্যে পাক সংখ্যা n_{2} । যদি L_{1} এবং L_{2} এই দুটি স্বাবেশাঙ্ক হয় দুটি সলিনয়েডের জন্য তাহলে দেখাও যে সলিনয়েড দুটির পারস্পরিক আবেশ হবে $M<\sqrt{L_{1} L_{2}}$ ।

8।（i）গাউসের স্থিরতড়িতের উপপাদ্য থেকে কুলন্বের সূত্রটি বাহির কর।
（ii）বায়ুমাধ্যমে দুটি α－কণা $\left({ }_{2} \mathrm{He} e^{4}\right)$－এর মধ্যে পারস্পরিক দূরত্ব হল $3.2 \times 10^{-15} \mathrm{~m} \mid$ এদের মধ্যে কুলম্ব বল বাহির কর।

৫।（i）তড়িৎপ্রবণতা ও তড়িৎভেদ্যতা－র সংজ্ঞা দাও।
（ii）দুটি বিन্দু আধানের মান $+q$ এবং তারা যথাক্রমে $(a, a, 0)$ ও $(a, 0,0)$ অবস্থানে অবস্থিত। এই আধান বিন্যাসের দ্বিমেরু ভামকের মান নির্ণয় করো। ২＋৩

৬।（i）$\vec{B}=k(\hat{i} y-\hat{j} x)$ ，যেখানে k হল ধ্র্রবক। এই \vec{B} চোন্বক ক্ষেত্রটি তৈরী হবে যে তড়িৎপ্রবাহ ঘনত্বের জন্য তা বাহির করো।
（ii）यদি \vec{B} চৌন্বক ক্ষেত্র ধ্রুবক হয় তাহলে দেখাও যে $\vec{A}=-\frac{1}{2} \vec{r} \times \vec{B}$ । যেখানে \vec{A} হল চোম্বক ভেক্টর বিভব।

Group－B

নিন্নলিখিত প্রশ্শগুলির মধ্যে যে কোনো দু’টি প্রশ্নের উত্তর দাও ： ১০×২＝২০

१।（i）দেখাও যে $\frac{\hat{r}}{r^{2}}$ এই ভেক্টর ক্ষেত্রটি সলিনয়ডাল এবং সংরক্ষী।
（ii）সুযমভাবে আহিত পাতলা গোলকের জন্য বিভিন্ন স্থানে তড়িৎক্ষেত্র বাহির করো এবং কেন্দ্র থেকে দূরত্বের সাথে লেখচিত্র অঙ্কন করো।

৮－।（i） 1 m লम্বা， 4 cm ব্যাসার্ধ́， 1000 পাক সংখ্যা বিশিষ্ট একটি সলিনয়েডে 1 Amp তড়িৎ প্রবাহ হচ্ছে। এই সলিনয়েডের কেন্দ্রে চৌন্বক ক্ষেত্র বাহির করো। ৫＋৫
（ii）তড়িৎচুম্বকীয় ক্ষেত্র সম্পর্কিত ফ্যারাডের সূত্রটি লেখ এবং তার অবকল রূপটি বাহির করো।

$$
৫+৫
$$

৯।（i）$\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}$－এর মাত্রা कि？
（ii）সূর্য থেকে যে আলো পৃথিবীপৃষ্ঠে এসে পৌঁছায় তার তীব্রতা $1300 \mathrm{Wm}^{-2}$ । এই আলোর জন্য তড়িৎক্ষেত্র এবং টোন্বকক্ষেত্রের r．m．s．মন বাহির কর। 8＋৬

১০।（i）বায়ো－সার্তাটের সূত্রটি লেখো।
（ii）＇a＇ব্যাসার্ধ বিশিষ্ট একটি বৃত্তাকার তড়িৎ কুণ্ডলীর অক্ষের উপর চোম্বক ক্ষেত্র বাহির করো।
（iii）দেখাও যে দুটি বৃত্তাকার কুণ্ডলী ব্যবহার করে একটি সুযম চৌন্বক ক্ষেত্র তৈরী করা যায়।

