

বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY

Question Paper

B.Sc. Honours Examination 2022

(Under CBCS Pattern)
Semester - II
Subject: PHYSICS

Paper: C 3-T

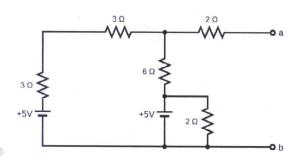
Electricity and Magnetism

Full Marks: 40
Time: 2 Hours

Candidates are required to give their answers in their own words as far as practicable.

The figures in the margin indicate full marks.

Group - A


Answer any four of the following questions.

 $5 \times 4 = 20$

- 1. The electric field at any point within a charged sphere of radius a is $\vec{E} = Ar^3\hat{r}$. Find the volume charge density and total charge within the sphere.
- 2. Find the electric field produced by an infinite cylinder of radius 'a' and volume charge density $\rho(r) = 5re^{-2r}$ C/m³ (r being the distance from the axis of the cylinder); at a point inside the cylinder.
- 3. (a) Find an expression for force per unit length between two parallel current carrying conductors.

P.T.O.

- (b) A current I flows through a wire shaped in the form of a square of side L. Determine the magnetic field at the centre of the square. 2+3
- 4. The distance between two parallel plates of a air capacitor is d. A dielectric slab of thickness x is introduced in the air gap. Show that the capacitance of the capacitor will be doubled if the dielectric constant of the material of the slab is $k = \frac{2x}{2x d}$.
- 5. (a) Obtain the relation between magnetic field (\vec{B}) , magnetization (\vec{M}) and magnetic intensity (\vec{H}) . Discuss qualitatively.
 - (b) A bar magnet made of iron has magnetic moment 2 A.m^2 and mass $5 \times 10^{-3} \text{ kg.}$ If the density of the iron is $6 \times 10^{-3} \text{ kg.m}^{-3}$. Find the intensity of magnetization. 3+2
- 6. (a) Find the Thevenin and the Norton equivalent circuits between the terminals *a* and *b* for the network given below.
 - (b) Determine the resistance to be connected across a and b in the following figure to dissipate maximum power and calculate the maximum power. 3+2

Group - B

Answer any *two* of the following questions:

 $10 \times 2 = 20$

- 7. (a) A sphere of radius R carries a polarization P(r) = kr, where k is a constant and r is the vector from the center.
 - (i) Calculate the bound charges σ_b and ρ_b .
 - (ii) Find the field inside and outside the sphere.

P.T.O.

- (b) A spherical charge distribution consists of a uniform charge density ρ_1 from r = 0 to a/2, and ρ_2 from r = a/2 to a. Find the electric potential at r = a/2 and a. 5+5
- 8. (a) A point charge q is located at a distance a from an infinite conducting plane at zero potential. By the method of electrical image, calculate the force between the charge and the plane.
 - (b) Show that electric field is conservative in nature.
 - (c) The electric potential in a space is represented as V = 3x + 5y 6z. Show that the electric field intensity is uniform everywhere in the space. 5+3+2
- 9. (a) Define the terms electric susceptibility and relative permittivity. Obtain the relation between them.
 - (b) What is Lenz's law? Show that it is in accordance with the law of conservation of energy.
 - (c) A proton with a kinetic energy of 1 MeV is entering a magnetic field (along north to south) of 15 T at right angles from East to West direction. Calculate the magnitude and direction of force acting on it. Given, mass of proton is $m = 1.67 \times 10^{-27}$ kg.

4+3+3

- 10. (a) Suppose an ac emf $v = V_0 \cos wt$ is applied to a circuit consisting of a pure inductor of inductance L and a capacitor of variable capacitance C in series. The capacitor is shunted by a resistance R. Find the value of C which makes the current through the coil independent of R.
 - (b) Starting from the expression of magnetic vector potential $\vec{A} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{dl}}{r}$ obtain the expression $\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{\vec{dl} \times \vec{r}}{r^2}$, where $\vec{B} = \vec{\nabla} \times \vec{A}$. Which law does this expression represent?
