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1. Answer any five questions : 2×5=10

(a) If a, b, c be positive real numbers, prove that 
3
2

a b c
b c c a a b

    

unless  a = b = c.

(b) Prove that for a complex number z,    1 Re Im
2

z z g z    .

(c) Discuss the maximum number of complex root of 6 23 2 3 0x x x     using

Descartes’ rule of sign.

(d) Solve the equation 4 2 2 6 0x x x     where it is given that (1 + i) is a root.

P.T.O.



(e) Prove that the product of any m consecutive integers is divisible by m.

(f) A set contains only null vector. Is it independent? Exlpain.

(g) Let P be an orthogonal matrix with det (P) = –1. Prove that –1 is an eigen value of

P.

(h) If a | b, with gcd (a,b) = 1, then show that a | c.

2. Answer any four questions : 5×4=20

(a) State and prove Cayley-Hamilton theorem.

(b) Find the basis and the dimension of the subspace W of R3 where

  3, , : 0W x y z R x y z     .

(c) Show that the intersection of two subspaces of a vector space V over a field F

is a subspace of V. Is the union of two subspaces a subspace of V ? If not,

discuss the condition.

(d) Determine the conditions for which the system : ; 2 3 1x y z b x y z b       ;

25 2x y az b    admits of (i) unique solution, (ii) no solution and (iii) many

solutions.

(e) A linear mapping 3 3:T R R  is defined by

      3
1 2 3 1 2 3 2 3 1 2 3 1 2 3, , 2 , 4 , 3 , , ,T x x x x x x x x x x x x x x R       , Find the matrix

relative to the order basis       1,0,0 , 0,1,0 , 0,0,1  of R3.

(f) Show that the eigen values of a real symmetric matrix are all real.

3. Answer any three questions : 10×3=30

(a) (i) If n be a positive integer, prove that

 1.3.5.......... 2 11 1
2.4.6........22 1 2 1

n
nn n


 

 
5
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(ii) Prove that the minimum value of  2 2 2x y z   is  27
c

 where x, y, z are positive

real numbers subject to the condition 2 3 6x y z c   , c being a constant.

Find the values of x, y, z for which the minimum value is attained. 5

(b) (i) If cos cos cos 0      and sin sin sin 0      then prove that

 cos3 cos3 cos3 3cos        . 3

(ii) Show that the roots of    2 2
1 1

n n
z z    are the values of

 2 1
tan , 1,2,.....,

4
r

i r n
n
 

  . 5

(iii) Find the value of n ni i  . 2

(c) (i) Find the integers u and v such that 63 55 1u v  . 2

(ii) Prove that for all integers 32, 1n n   is composite. 2

(iii) Establish that the difference of two consecutive cubes is never divisible by 2. 2

(iv) If :f A B  and :g B C  are both injective mappings then show that the

composite mapping :g f A C  is injective. 2

(v) If gcd (a, b) = 1, then gcd (a2, b2) = 1. 2

(d) (i) Solve the equation by Cardan’s method : 3 29 15 25 0x x x    . 6

(ii) The roots of the equation  3 2 0 0x px qx r r      are , ,   . Find the

equation whose roots are 2 2 2, ,      . 4

(e) (i) Consider a set Z in which the relation   is defined by a b  iff 3 4a b  is

divisible by 7. Examine whether   is an equivalence relation. 5

(ii) Let S be a real skew symmetric matrix of order n, then prove that

   1

n nI S I S
   is orthogonal. 5
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