DEPARTMENT OF PHYSICS (UG)

PROGRAM OUTCOME: B.Sc. Honours & General in PHYSICS

Students having an academic background of science at 10+2 level can pursue B.Sc programme in various branches. After the completion of the B.Sc degree there are various options available for the Physics students, they can pursue master degree in Science i.e. M.Sc, work in research related fields and can even look for professional job oriented courses. Often, in some reputed universities or colleges the students are recruited directly by big MNC's after the completion of the course. The student after graduating will be eligible for various government exams conducted by UPSC, SSC etc.

PROGRAM SPECIFIC OUTCOME:

Honours Course:

After successful completion of B.Sc.(Hons.) Physics Course student will be able to:

- Students are expected to acquire acore knowledge in physics, including the major premises of classical mechanics, quantum mechanics, electromagnetic theory, electronics, optics, special theory of relativity and modern physics.
- Students are also expected to develop a written and oral communication skills in communicating physics-related topics.
- Students should learn how to design and conduct an experiment (or series of experiments) demonstrating their understanding of the scientific method and processes. Not only that they are expected to have an understanding of the analytical methods required to interpret and analyze results and draw conclusions as supported by their data.
- Students will develop the proficiency in the acquisition of data using a variety of laboratory instruments and in the analysis and interpretation of such data
- Students will learn the applications of numerical techniques for modeling physical systems for which analytical methods are inappropriate or of limited utility.
- Students will realize and develop an understanding of the impact of physics and science on society.
- Apply conceptual understanding of the physics to general real-world situations.
- Describe the methodology of science and the relationship between observation and theory.
- Learn to minimize contributing variables and recognize the limitations of equipment.
- Discover of physics concepts in other disciplines such as mathematics, computer science, engineering, and chemistry.
- Develop the following experimental tools: Numerically model simple physical systems using Euler's method, curve fitting, and error analysis.
- Analyze physical problems and develop correct solutions using natural laws.

General Course:

After successful completion of B.Sc.(General) Physics Course student will be able to:

- Understand the depth knowledge of various subjects of Physics.
- Demonstrate skills and competencies to conduct wide range of scientific experiments.
- Identify their area of interest in academic and R&D.
- Perform job in various fields' viz. science, engineering, education, banking, business and public service, etc. with precision, analytical mind, innovative thinking, clarity of thought and expression, systematic approach.

COURSE OUTCOME (2017-2018):

1. B.Sc. Honours in Physics

SEMESTER-I [Choice Based Credit System]

SI.No.	Name of the	Nature	Outcome
C1	Subject C1T: MATHEMATICAL PHYSICS I	Theory	The purpose of the course is to introduce students to methods of mathematical physics and to develop required mathematical skills to solve problems in quantum mechanics, electrodynamics and other fields of theoretical physics. Upon completion of the course, the student should be able to understand basic theory of:
	C1P: MATHEMATICAL PHYSICS I	Practical	 Elements of Probability theory Coordinate systems Computer architecture Successful students should be able to: Apply methods of functions of complex variables for calculations of integrals Work with vectors Work with Orthogonal Curvilinear Coordinates program in python
C2	C2T: MECHANICS	Theory	 Students will be able to articulate and describe: Relative motion. Inertial and non inertial reference frames
	C2P: MECHANICS	Practical	 Parameters defining the motion of mechanical systems and their degrees of freedom Study of the interaction of forces between solids in mechanical systems. Centre of mass and inertia tensor of mechanical systems. Application of the vector theorems of mechanics and interpretation of their results. Newton's laws of motion and conservation principles. Introduction to analytical mechanics as a systematic tool for problem solving. Special theory of relativity. Basic experiments on the above mentioned topics
GE1	GE1T: MODERN PHYSICS GE1P: MODERN PHYSICS	Theory Practical	 Students will be able to: Know the vocabulary and concepts of modern physics: basic special relativity and general relativity, elementary quantum mechanics, nuclear physics, and particle physics.

		AAAA	Understand the relationship between observation and theory and their use in building the basic concepts of modern physics Understand how major concepts developed and changed over time. Improve communication and cooperative learning skills. Organize a presentation on the application of modern physics to modern technology.
			Organize a presentation on the application of modern
	,	~	Desis sur avies ante an Madam Dhusias
			Basic experiments on Modern Physics

SEMESTER-I [Choice Based Credit System]

SI.No.	Name of the	Nature	Outcome
C3	C3T: ELECTRICITY AND MAGNETISM	Theory	 The student is expected to: Obtain, through a combined theoretical and experimental approach to the subject, a fundamental understanding of electromagnetic phenomena. Learn how to analyze various problems in electromagnetism with mathematical methods
	C3P: ELECTRICITY AND MAGNETISM	Practical	 involving vectors and elementary differential and integral calculus. Gain experience in analyzing problems within electromagnetism with ICT based methods. Learn experimental methods in physics.
C4	C4T: WAVE AND OPTICS C4P: WAVE AND OPTICS	Theory Practical	 On satisfying the requirements of this course, students will have the knowledge and skills to: Understand linear, time-invariant systems. Understand the role of the wave equation and appreciate the universal nature of wave motion in a range of physical systems Understand optical phenomena such as polarisation, birefringence, interference and diffraction in terms of the wave model Understand the foundations of fluid dynamics Through the lab course, understand the principles of measurement and error analysis and develop skills in experimental design
GE-2	GE2T: THERMAL PHYSICS AND STATISTICAL MECHANICS	Theory	 Upon successful completion, students will have the knowledge and skills to: Identify and describe the statistical nature of concepts and laws in thermodynamics, in particular: entropy,

GE2P: THERMAL	Practical		temperature, chemical potential, Free energies,
PHYSICS AND			partition functions.
STATISTICAL		\succ	Use the statistical physics methods, such as Boltzmann
MECHANICS			distribution, Gibbs distribution, Fermi-Dirac and Bose-
			Einstein distributions to solve problems in some
			physical systems.
		\triangleright	Apply the concepts and principles of black-body
			radiation to analyze radiation phenomena in
			thermodynamic systems
		Δ	Apply the concents and laws of thermodynamics to
			Apply the concepts and laws of thermodynamics to
			solve problems in thermodynamic systems such as
			gases, neat engines and retrigerators etc.
		\succ	Analyze phase equilibrium condition and identify types
			of phase transitions of physical systems.
		\triangleright	Make connections between applications of general
			statistical theory in various branches of physics
		\triangleright	Design, set up, and carry out experiments; analyse data
			recognising and accounting for errors; and compare
			with theoretical predictions

PART – II (3-Tier System)

SI.No.	Name of the Subject	Nature	Outcome
P- III	Mathematical Methods II	Theory	The purpose of the course is to introduce students to methods of mathematical physics and to develop
			quantum mechanics, electrodynamics and other fields
			the student should be able to understand basic theory
			of:
			Vector and tensor analysis.
			Functions of complex variables
			Elements of distribution theory.
			Fourier Series
			Apply methods of functions of complex variables for calculations of integrals
			Expand functions in Taylor's Series
			Expand functions in Fourier Series
			Work with vectors
			Work with tensors
	RELATIVITY	Theory	After successfully completed course, student will be
			able to
			Differentiate wrong general public ideas about
			the theory and what the theory is really about

			Understand time – spacial relations at the local
			and global levels
			Understand the basis of Standard model
			Understand the gravity as bending of space-
			time
			Calculate the angle light bends under the
			influence of gravity
			Calculate the increase of wavelength of light
			leaving Earth.
			Calculate time dilation corrections used in GPS
			satellites due to special and general relativity.
			Understand the basic characteristics of black
			holes.
		\triangleright	Understand the basic characteristics of
			gravitational waves
			Understand the accelerated expansion of the
			universe in relation to Einstein's cosmological
			constant
CURRENT ELECTRICITY	Theory	Studen	ts will be able to demonstrate the following
AND MAGNETISM		skills w	hen analyzing situations involving electrostatic
		fields a	nd potentials and their sources, currents,
		voltage	e, capacitance, power, basic electrical circuits,
		magne	tic fields and their sources, and induction:
		\succ	Students will be able to conduct qualitative
			analysis of electromagnetism problems which
			demonstrates conceptual understanding as
			measured by performance in visualizing
			problems through diagrams, estimating
			answers, assessing and justifying answers,
			analyzing graphs and clear, written
			explanations
		\blacktriangleright	Students will be able to perform quantitative
			calculations in situations involving electric and
			magnetic fields, and demonstrate knowledge
			of the relevant basic units, vector addition, and
			application of basic calculus
Electromagnetic	Theory	After s	uccessful completion of this course, students will
Theory		be able	e to:
		\triangleright	Understand electric and magnetic fields and
			apply the principles of Coulomb's Law and
			Gauss's law to electric fields in various
			coordinate systems.
		\succ	Identify the electrostatic boundary-value
			problems by application of Poisson's and
			Laplace's equations.
		\succ	Understand the depth of static and
			time-varying electromagnetic field as governed
			by Maxwell's equations.

			 Formulate and analyse problems involving lossy media with planar boundaries using uniform plane waves. Apply concepts of this subject in Antenna Engineering and its applications.
	Quantum Mechanics I	Theory	 This course develops concepts in quantum mechanics such that the behaviour of the physical universe can be understood from a fundamental point of view. It provides a basis for further study of quantum mechanics. Content will include: Review of the Schrodinger equation, operators, eigenfunctions, compatible observables, infinite well in one and three dimensions, degeneracy. Fourier methods and momentum space; Hermiticity. Scalar products of wave functions, completeness relations, matrix mechanics. Harmonic oscillator in one and three dimensions. Sudden approximation; central potentials, quantisation of angular momentum, separation of radial and angular variables, spherical harmonics, hydrogen atom, spin.
P-IV	Mechanics II	Theory	 After successful completion of this course, students will be able to: State the Newton's law of viscosity and Explain the mechanics of fluids at rest and in motion by observing the fluid phenomena. Compute force of buoyancy on a partially or fully submerged body and Analyze the stability of a floating body Derive Euler's Equation of motion and Deduce Bernoulli's equation. Lagrangian Mechanics Hamiltonian Formulation
	Atomic, Molecular Phys with LASER	Theory	 After successful completion of this course, students will be able to: List different types of atomic spectra and related instrumentation. Describe theories explaining the structure of atoms and the origin of the observed spectra. Identify atomic effect such as space quantization and Zeeman effect. Describe the molecular bonding and molecular

			 energies. Memorize different technique used in laser and applications
	Electronics II	Theory	 After successful completion of the course student will be able to: Design and analyze the basic operations of MOSFET. Know about the multistage amplifier using BJT and FET in various configuration to determine frequency response and concept of voltage gain. Know about different power amplifier circuits, their design and use in electronics and communication circuits. Know the concept of feedback amplifier and their characteristics. Design the different oscillator circuits for various frequencies
	Nuclear Physics I	Theory	 After successful completion of the course student will be able to: express the basic concepts of nuclear physics. express the radioactive decays. express the alpha decay. express the beta decays. express the gamma decay. express nuclear binding energy and nuclear masses. explain nuclear fission. explain nuclear fusion.
P-V	VA. Non-electrical Practical VB. Electrical & Electronics Practical	Practical Practical	 Students will perform non-electrical experiments related to their theory syllabus. Students will perform electrical and electronics experiments related to their
			theory syllabus.

<u> PART – III (3-Tier System)</u>

SI.No.	Name of the s	Subject	Nature	Outcome
Paper-	Quantum Me	echanics	Theory	By the end of the course,
VI :	=			The students will be able to use the

		perturbation theory and variational approach to solve questions in atomic physics;
		The students will be able to conduct angular
		momentum operation and summation for
		orbital angular momentum and spin.
Nuclear Physics II	Theory	On completion of this course, students should be able
		to:
		 demonstrate a knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter; discuss nuclear and radiation physics connection with other physics disciplines – solid state, elementary particle physics, radiochemistry, astronomy discuss nuclear and radiation physics applications in medical diagnostics and therapy, energetics, geology, archaeology; escribe experimental techniques used (or developed) for nuclear physics purposes (logic circuits, gamma cameras, semiconductor detectors) and discuss their influence on development of new technologies explore an application of nuclear and/or radiation physics and communicate their understanding to a group of their peers in a
		short presentation.
Statistical Mechanics	Theory	On completion of this course, students should be able
		to:
		 explain statistical physics and thermodynamics as logical consequences of the postulates of statistical mechanics; apply the principles of statistical mechanics to
		selected problems; apply techniques from statistical mechanics to
		a range of situations;
		use the tools, methodologies, language and
		conventions of physics to test and communicate ideas and explanations
		 use the tools, methodologies, language and
		conventions of physics to test and
		communicate ideas and explanation.
Solid State Physics	Theory	Students should gain basic knowledge of solid state
		physics. This implies that the student will:
		➢ be able to account for interatomic forces and

Paper-	VIIA. Practical: Analog	Practical	 bonds have a basic knowledge of crystal systems and spatial symmetries be able to account for how crystalline materials are studied using diffraction, including concepts like form factor, structure factor, and scattering amplitude. know the principles of structure determination by diffraction. understand the concept of reciprocal space and be able to use it as a tool know the significance of Brillouin zones know what phonons are, and be able to perform estimates of their dispersive and thermal properties be able to calculate thermal and electrical properties in the free-electron model know Bloch's theorem and what energy bands are Students will perform Analog electronics
VII:	experiments		experiments related to their synabus.
	VIIB. Practical: Digital electronics experiments	Practical	Students will perform Digital electronics experiments related to their syllabus.
Paper- VIII	VIIIA. Practical: Non Electronic experiments	Practical	Students will perform non-electronics experiments related to their syllabus.
	VIIIB. Computer Practical	Practical	On completion of this course, students should be able to gain knowledge about:
			 Basic building blocks Computer soft ware- Operating system Elementary programming with Fortran
	VIIIC. Project Work	Project	Students will do the project experiments, in consultation with the teacher, on any topic within the content of the theoretical syllabus

B.Sc. General in Physics

<u> PART-1</u>

SI.No.	Name of the	Nature	Outcome
	Subject		
PAPER-I	GrA:	Theory	 On completion of this course, students should be able to gain knowledge about: Vector Analysis. Mechanics. SHM, Simple & Compound pendulums, torsional pendulum. General Properties of Matter.
	GrB:	Theory	 On completion of this course, students should be able to gain knowledge about: Kinetic Theory of Gases. Thermodynamics.
	GrC:	Theory	 On completion of this course, students should be able to gain knowledge about: Waves. Acoustics. Geometrical Optics. Tutorials.

PART-2

SI.No.	Name of the	Nature	Outcome
	Subject		
Paper-	GrA:	Theory	On completion of this course, students should be able to gain
11			knowledge about:
			 Electrostatics.
			Steady electric current.
	Gr.B:	Theory	On completion of this course, students should be able to gain
			knowledge about:
			Magnetostatics.
			Electromagnetic induction and Maxwell's Equations.
			Transients in DC.
			 Alternating current
	GrC:	Theory	On completion of this course, students should be able to gain
		-	knowledge about:
			Physical optics.
			Electronics.

	GrD:	Theory	 On completion of this course, students should be able to gain knowledge about: Relativity. Atomic Physics. Quantum mechanics. Nuclear Physics Solid State Physics Tutorials.
PAPER- III		Practical	Students will perform experiments related to their theory syllabus.

PART – 3

SI.No.	Name of the Subject	Nature	Outcome
PAPER- IV	GrA:	Theory	 On completion of this course, students should be able to gain knowledge about: Mechanics and Thermodynamics. Sound and Acoustics. Electricity. LASER and Modern Optics. Electronics. Computer Hardware, Software and application. Overall tutorial.
	GrB:	Practical	Project-type sample experiments on any topic within the content of the theoretical syllabus (Part III Gen).